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Abstract

Pastoralism is widely practiced in arid and semi-arid lands and is the primary means of livelihood for
approximately 268 million people across Africa. Critical environmental, interpersonal, and transactional variables
such as vegetation and water availability, conflict and ethnic tensions, and private/public land delineation
influence the movements of these populations across space and time. The challenges of climate change and
conflict are widely observed by nomadic pastoralists in Somalia, particularly in the regions of Somaliland and
Puntland, where resources are scarce, natural disasters are increasingly common, a protracted conflict has
plagued communities for decades, and over 65% of the population rely on pastoralism as a primary livelihood.
Bereft of necessary, real-time data, researchers and programmatic personnel often turn to post hoc analysis to
create an understanding of the interaction between climate, conflict, and migration, and design programs to
address the needs of nomadic pastoralists and those that drop out of pastoralism in search for alternate

livelihoods. By designing an Agent-Based Model (ABM) that simulates the movement of nomadic pastoralists



based on aggregated, typologically-diverse, historical data of environmental, interpersonal, and transactional
variables in Somaliland and Puntland between 2008 and 2018, this study intends to identify how pastoralists
respond to complex, changing environments over time. The subsequent application of spatial analysis, through
Choropleth maps, Kernel Density Mapping and Standard Deviational Ellipses, characterizes the resultant
pastoralist population densities in response to these spatio-temporal variables. Outcomes of these analyses
demonstrate a large scale spatio-temporal trend of pastoralists migrating to the southeast of the study area with
high density areas manifesting in the south of Nugaal, the northwest corner of Sool, and along the Ethiopian
border. While minimal inter-seasonal variability is seen, multiple analyses support the consolidation of
pastoralists to specifically favorable regions. While this ABM does produce compelling associations between
pastoralist movements and terrestrial and conflict variables, it relies heavily on assumptions and incomplete data
and is not necessarily representative of on-the-ground realities. Given the paucity of data regarding pastoralist
decision-making and migration, validation remains challenging with current methods based on heuristics and

descriptions in literature.



Background

Pastoralism is widely practiced in arid and semi-arid lands (ASALs) and is the primary means of livelihood for
approximately 268 million people across Africa (FAO, 2018). Pastoral mobility is largely driven by the availability
and quality of fodder and water to maintain livestock herds, influencing the spatial and temporal variability of
pastoral migration patterns across landscapes (Pas, 2018; Sakamoto, 2016). While the non-sedentary lifestyle of
pastoralism can be considered an effective adaptation technique to environmental changes, dependence on
natural resources contributes to the risk-averse nature of pastoralism (FAO, 2018; Pas, 2016). Unpredictable
climatic changes contribute to the increase in the severity and frequency of natural hazards, irregular rainfall
patterns, extreme temperatures, and changing land cover, affecting the availability of natural resources required
to support livestock herds (Avis & Herbert, 2016; Onyango, 2016; Sakamoto, 2016). These environmental effects
are compounded by ongoing land degradation, land privatization, conflict, and numerous other factors,

weakening pastoral systems (FAO, 2018; Onyango, 2016).

The challenges experienced by pastoralist communities are unevenly felt across the continent but are particularly
pertinent in Somalia, where approximately 65% of the population relies on pastoralism as a primary source of
livelihood (Carr-Hill, R. A., & Ondijo, D. 2012). In the last decade alone, Somalia has experienced numerous
devastating environmental shocks over a short period of time. Between 2010 and 2012, a catastrophic drought
with subsequent food insecurity and famine that affected a large part of the Horn of Africa affected 13 million
people, many of whom were pastoralists (Slim, 2012). Of all the countries affected by the drought, Somalia was
arguably the hardest hit in the region, which was aggravated by the inability to provide timely assistance due to
instability, conflict, and lack of humanitarian coordination (ibid). Shortly after this period, Somalia experienced
another drought between 2016 and 2017 that was followed by lower-than-normal rainfall in the following years,
resulting in growing numbers of internally displaced populations (IDPs). The Food and Agriculture Organization
(FAO) (2018) noted that it takes approximately five years for a livestock-dependent household to fully recover
from the effects of severe drought. The severe droughts in Somalia in 2010 - 2012 and 2016 - 2017 then

theoretically did not not give pastoral households time to fully recover. A variety of adaptation techniques are
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used to protect livestock-related livelihoods in times of drought or conflict, including forming agreements and
alliances with members of the community, sharing of necessary resources, and diversification of livelihoods
(Shaughnessy, 2018). At times, however, the expansion of private land and environmental degradation results in

resource conflicts and occasional livestock death (Onyango, 2016).

The impact of environmental hazards is compounded by ongoing conflict and political instability that has troubled
the country for decades. Violence has manifest itself in Somalia in numerous ways. Ongoing armed conflict
between the Somali militia, the African Union Mission in Somalia, and non-state actors has led to widespread
insecurity and displacement, particularly in Southern Somalia (IDMC, 2018). In the northern part of the country,
communal violence prompted by clan/ethnic differences and the quest for political autonomy has been an
ongoing problem in the contested regions of Puntland and Somaliland. In this region, Somaliland is working to
gain international recognition for being an independent country while quarreling with neighboring Puntland over
disputed land (Avis and Herbert, 2016). In 2018 alone, an estimated 578,000 people were displaced due to conflict,
while an additional 548,000 people were displaced by regional disasters in Somalia (IDMC, 2018). To date, the
total number of IDPs in Somalia is thought to be more than two million people, and this does not account for the
many refugees who have fled the country altogether (ibid). Numerous organizations have documented conflict
and disaster as the primary drivers of displacement for Somalis, including pastoralists (IDMC, 2018; UNHCR

PRMN, 2019).

Pastoral migration, whether voluntary or forced, is a complex phenomenon that scientists continue to grapple
with. While the drivers of migrations are broadly understood, less is known about how environmental and conflict
variables affect patterns of movement across space and time in the past and how they may continue to evolve in
the future. To the knowledge of the authors, there is very limited public information available about pastoral
populations in Somalia or the self-declared autonomous region of Somaliland. Without information that captures
the dynamic nature of pastoral populations, it is extremely challenging to understand the evolving patterns of

movement in response to environmental changes and ongoing conflict on a regional scale. To date, several



studies use computer models as a means to explore pastoral migration through virtual environments, which will
be referred to in the following paragraph. Computer models enable the simulation of scenarios in which the
relationships of variables are tested and analyzed over time and/or space providing insight into the observed

phenomenon.

Agent-based models (ABM) are a subset of computer modeling techniques that are increasingly being utilized to
examine the stochastic realities of human migration in response to environmental and conflict variables
(Hailegiorgis et al., 2010). ABMs can simulate the actions of agents, in this case pastoralists, based on the
interactions among agents and their surrounding environment. The bottom-up nature of ABMs enables the
capture of granular patterns of movement that can be summarized to a systems-wide level. While some models
aim to gain a holistic understanding of the adaptive behaviors of pastoralists in response to their environment
(Sakamoto, 2016), others consider the possible effects of climate and/or conflict on pastoral movement (Ginetti
et al., 2015, Hailegiorgis et al., 2010, Smith, Kniveton, Wood, & Black, 2011), as well as the interplay between
pastoral movement, land privatization (Kennedy et al., 2010, Lesorogol & Boone, 2016), and disease transmission
(Xiao, Cai, Moritz, Garabed, & Pomeroy, 2015). Computer models rely on a combination of data sources, both
qualitative and quantitative evidence, predictive datasets, and/or informed assumptions to generate simulation
scenarios. The extensive spatial and temporal variability of pastoral movement and the factors that trigger it

warrants the implementation of a simulation model that captures its nuances and the wide-ranging variability.

The integration of geospatial data and agent-based modeling to study pastoral migration is less explored in
literature. The existing models and findings, however, have contributed substantially to an ever-growing body of
literature on the subject. Sakamoto (2016) integrates low-resolution multi-temporal satellite imagery analysis and
agent-based modeling to study pastoral access to resources in dryland vegetation in northeastern Nigeria while
the Center for Social Complexity and Department of Computational Social Science at George Mason University
has examined the intersection of GIS and agent-based modeling through the development of a range of models

on the ABM platform MASON, including the HerderLand, AfriLand, RiftLand, and RebeLand models. The models



consider a range of scenarios in Eastern Africa that examine resource contention, the effect of environmental
changes, availability of watering holes, and the effect of private land on pastoral movement on multiple scales
(Kennedy et al, 2010). To the knowledge of the authors however, no ABM has been designed for or applied to

Somaliland while southern Somalia is well studied.

The purpose of this study is to examine the relationship between environmental change, conflict, and pastoral
movement in Somaliland between 2008 to 2018 through agent-based modeling. The research generates
synthetic movement patterns for nomadic pastoralists in the region, which are influenced by a series of
environmental, interpersonal, and transactional variables. Evidently, computer modeling presents high levels of
uncertainty but also has immense potential to improve humanitarian preparedness and response. To improve
modeling capacities, it is necessary to continue developing the input data and methodology to identify the
successes and limitations of the model. This paper adds to a growing body of literature that considers the use of
predictive modeling and geospatial analysis to address issues in the humanitarian sector where climate and

conflict variables have significant impact on population movement.

Methods

Setting

This agent-based model simulates the movement of nomadic pastoralists in response to conflict and
environmental variability in northern Somalia, specifically in the regions of Somaliland and Puntland, between
January 2008 and December 2018. Seven administrative regions (Figure 1) comprise Somaliland and Puntland,

and the spatial extent of this analysis.



Somaliland Administrative 1 Districts

Figure 1. Map of the boundaries of administrative 1 districts in Somaliland and Puntland.

Data collection

Data utilized for this study (Table 1) were obtained from diverse sources, are of disparate typologies, and were

quantified, normalized, and utilized in various ways to generate agents, assign attributes to those agents, and

develop an environmental model. The following is a description of those data sources, manipulations, and the

mechanism for normalization.

Table 1. Data utilized for the agent-based model, including ontological category, type of variable, source and

date of collection.

Ontological Computational Variable | Variable Format Data Source Time when
Category data was
collected
Agent
demographics
Population distribution Tabular population UNFPA 2014
estimates by Population




administrative

boundaries

Survey Data

Environment

data

Base map Remotely sensed satellite | Google Earth 2019
imagery with
superimposed
administrative
boundaries
Slope Remotely-sensed raster DIVA GIS 2008
layer extrapolated from
elevation data
Surface water Raster layer of remotely- | NDWI Layer Aggregation
sensed water sources obtained from from 1948
utilized to create a NDWI | Google Earth and 2018
Layer
Artificial water sources Geo-tagged data on Somalia Water Data from
artificial water sources and Land January 2008
Information until May
Management 2018
(SWALIM)
Vegetation data Raster layer of remotely- | MODIS Terra Data from
sensed data utilized to Vegetation 2008 until




Organization

create a SAVI layer Indices 16-Day 2018
Global
Ethnic boundaries Polygons that delineate a | Kenya Somalia Data from
general understanding of | Consortium, 2015, as
geographic ethnic Clan map was recorded in
boundaries digitized and 1999
geocoded
Conflict data Geo-tagged conflict data | Armed Conflict | January 2008
Location & through
Event Data December
Project (ACLED) | 2018
Settlements Polygons created utilizing | Metropolitan May 2011
(Private/public land buffers around data provided
delineation) townships and cities by the
Humanitarian
Data Exchange
(HDX), uploaded
by UNOCHA
Somalia
Land Cover Polygon maps of land Food and May 2007
cover Agriculture

Manipulation and Normalization




The model environment is comprised of terrestrial variables including slope, surface water, points of artificial
water sources, and vegetation rigor; interpersonal components including ethnic boundaries and locations of
conflict; and a transactional variable that delineates private and public land. All data values were rasterized and
aggregated to a 1 km2 grid. Variables were then normalized to range values between 0-1, utilizing the equation,
below.

Vnormalized = (Vcurrent — Vminimum) + (Vmaximum — Vminimum)

Wherein V is the variable in consideration.

Slope was calculated from remotely-sensed elevation data obtained from DIVA GIS using the Slope Spatial Analyst
in ArcMap 10.6.1. The presence or absence of surface water was ascribed a binary score of 1/0 (presence=1)
based upon data downloaded through Google Earth Engine. Artificial water sources, such as wells and boreholes,
were gleaned from a survey-based, geocoded dataset provided by SWALIM (W. Stephen, personal
communication, April 18 2019), with cells containing more than 1 water source having higher values than pixels

that contained only one or none.

The vegetation score was calculated on a raster grid containing seasonal median pixel values. To calculate the
median pixel values, all available MODIS satellite data was seasonally aggregated, and the median pixel value was
calculated. Following this calculation, the Soil-Adjusted Vegetation Index (SAVI), equation below, was applied to
those median pixel values for each season in the study period to create a map of proxied vegetation availability.
This index has proven more appropriate for the presence of vegetation in arid regions (Vani and Mandla, 2017).
In this equation, NIR stands for near-infrared values and L equals the canopy background adjustment factor,
which was set at 0.5 to minimize soil brightness variations and eliminate the need for further calibrations around

soil-type (cite).
(1 + L)(NIR — Red)

SAVI =
(NIR + Red + L)




Ethnic boundaries obtained from a static map provided by the Kenya Somalia Consortium were digitized, and
rasterized, with buffers applied to the borders at 10 and 20 meters, with descending weighted values of 0.5 and
0.25, respectively. Conflict point data was gleaned from the ACLED database and rasterized. Grid cells that had
higher incidence of conflict were attributed higher values, and a temporal lag was assigned within the model|,
with conflict occurring the previous season having half the effect on environmental favorability the following

season.

In the absence of reliable data, the delineation of private and public lands was determined through expert opinion
(HHI-UNICEF workshop, Nairobi, Kenya, June 3-4, 2019). Eighty percent of land in Somaliland was estimated to be
publicly-owned, and the distribution of private land was assumed to be land which extends approximately 15
kilometers from the centroid of large metropolitan centers and five kilometers from smaller settlement centers.
To adhere to the 80% threshold reported, the private land boundaries around cities and towns were modified to

14 and 4 kilometers, respectively.

Overview of the Computational Model

This agent-based model is developed in RePast (Recursive Porous Agent Simulation Toolkit) Simphony 2.6 using
a Java-based simulation environment. Repast is a leading, open-source ABM development toolkit specifically
designed for social science applications and has been well regarded in comparison to other ABM platforms
(Railsback 2006). The Repast development framework provides all the basic functionality required to support the
execution of an ABM, including scheduling mechanisms and diverse modeling functions. The established
framework enables researchers to add components to customize the model to fit their needs, allowing the

environment to be modified and incorporate a range of dynamic variables.

This agent-based model includes two entities: 1) agents, each representing a single nomadic pastoralist

household unit, and 2) the physical environment, which is a geospatial landscape composed of both dynamic and



static attributes. At the start of the simulation each generated agent is assigned attributes, including their
geographic position at the start of the simulation, the name of the administrative unit they fall within, their
ethnicity, and clan association. The number of agents generated per administrative unit was informed by a
Population Estimation Survey conducted in 2014 (UNFPA, 2014). Within any given administrative unit, the agent
start position was randomly generated with two constraints: 1) the agent must not be in unsuitable landscapes
including water bodies and areas of bare soil (i.e. sand), and 2) the agent must be located 14 kilometers or more
outside a major city and four kilometers or more outside of smaller settlements, i.e. on ‘public land'. For every

simulation run, the agent start position remains identical.

The gridded physical environment is composed of 1 km? grid cells and has a spatial extent of approximately
490,000 km?, which covers the administrative regions in Somaliland and Puntland. The environment was designed
to include eight variables, grouped into three thematic components: terrestrial variables, interpersonal variables,
and transactional variables (Table 2). The environment variables are categorized to be either pull (attractors) or
push (detractors) factors for nomadic pastoralists whose patterns of movement are influenced by the availability
of water and suitable grazing land to support their herd. The factors were identified and included based on
literature, workshops, and/or discussions with regional experts. Intuitively, the presence of vegetation (as proxied
by SAVI) and availability of water are considered to be attractors, while steeper terrestrial slope, proximity to

conflict or potential ethnic tension (as proxied by proximity to ethnic borders) are designated detractors.

Variables, such as surface water availability, conflicts, and vegetation cover, are subject to seasonal changes. In
this model, four seasons exist per annum. The dry season from December to March is locally referred to as Jilaal,
which is followed by the long rainy season, Gu, from April to June. The dry season that follows, Hagaa, spans from
July to September while the short rainy season that takes place between October and November is known as
Deyr. Regarding water availability, during the dry seasons, the surface water layer is disabled, as nomadic
pastoralists tend to rely on man-made water sources such as wells and boreholes during these times and when

surface water is extremely sparse (HHI-UNICEF workshop, Nairobi, Kenya, June 3-4, 2019). The conflict



environmental surface changes seasonally during the model's timeline, with conflict point data being aggregated
to each season and changing at the end of the ascribed three-month period. Vegetation availability scores also
change seasonally, based upon the the medial pixel value of the imagery available for each defined season, as
described above, with applied SAVI scores. The inclusion of these real, longitudinal data creates a reflection of
not only the seasonal changes associated with wet and dry seasons, but also the changing environment due to

climate and human variables over the course of the simulation.

The favorability score for each land parcel is artificially created through the additive equation:

Scorepixer = vl + v2 + v3 — (0.25xv4) — v5 — (0.25 % v6)

Wherein,
v1 = normalized vegetative cover, as calculated with SAVI, where L=0.5
v2 = normalized surface water index (enabled in wet seasons)
v3 = artificial water point sources
v4 = normalized terrain gradient
v5 = normalized conflict frequency

v6 = ethnic boundary

Table 2. Attributable variables that are considered in environmental favorability score, relative impact and change

status.
Thematic Attributable Impact on Favorability Change Over Time
Variables Variable
NA Base map NA Static

Gradient of the land The greater the gradient, the less Static




(slope) favorable
Surface water Proximity to water source is favorable Changes seasonally, only
enabled in wet seasons
Terrestrial
Artificial water Proximity to water source is favorable Static
sources
Vegetation data Higher SAVI score correlates with more | Changes seasonally
vegetation, which is favorable
Ethnic boundaries Proximity to ethnic boundaries is less Static
favorable (with a gradient buffer of
20km)
Interpersonal
Conflict data Proximity to conflict is less favorable (no | Changes seasonally
gradient buffer)
Private/public land Private land requires a transaction Static
ownership between the land-holder and the
Transactional pastoralist to establish land-sharing. If
no agreement is made, the pastoralist
must find another land parcel

Simulating Movement
Agents move throughout the simulated geographic environment based on the fundamental premise that
nomadic pastoralists rely on livestock to support their livelihoods and are therefore heavily dependent upon

access to water and vegetation (Figure 2). At every time tick, i.e. a month, the agent searches for a cell in the



environmental grid with the highest favorability score within a search radius (referred to as scouting range) of its
surrounding environment. This scouting range was a random distance generated between a 15- and 30-kilometer
radius, based on expert consensus regarding the monthly mobility capacity of nomadic pastoralists. Once the
most favorable cell has been identified, the agent moves to this location and determines whether it is located on
private or public land. If the cell is public land, they are free to move to that location without any further delay
and have the option to stay there for the duration of the season (between one and three months), provided this
location continues to have the best favorability score. Once the season changes, the agent is required to seek out
further land. This latter constraint is an effort to model resource depletion of that grid given the grazing

requirements of a pastoralist herd.

However, if the cell happens to be on private land, the agent must negotiate a land-sharing deal with the local
landowners. If the agent successfully makes a deal with the landowner, they are able to remain at that location
for the duration of the season. However, if the agent is unable to obtain access, they are required to move to
another grid cell within the same time tick, consider whether the new grid location is private or public land, and
repeat the process described above. This secondary selection of a cell is determined by the next best score in the

gridded environment.

If the agent is unable to make a deal on three separate occasions in any given season, the agent state switches
from pastoralist to IDP, at which point the agent exits the simulation or ‘drops out’. This is done with the
assumption that the lack of access to grazing land leads to the death of livestock, and the pastoralist agent is

required to seek alternative livelihoods and will potentially drop out of a purely pastoralist lifestyle.
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Figure 2. Conceptual model for the ABM of nomadic pastoralist agents seeking new grazing land

The model was run for eleven years, between January 2008 and December 2018, with one month change and
decisional intervals. An explanation of the model described in a structured Overview, Design Concepts, Details
protocol, which has been amended to include details regarding human decision making (ODD+D) (Muller et al,
2013), can be found in Appendix 1. Given the constraints of computational power, completing the simulation for
all 225,767 pastoralist agents was not possible. Thus, a simple random sampling of 10% of the population in each
administrative region was conducted, and the agent-based model was executed with this subset of the generated

agents (Table 3).

Table 3. Number of synthetic agents generated per administrative unit for the simulation.

Administrative Unit Number of Agents

(10% of admin pop)

Awdal 2,851

Woqooyi Galbeed 4,374

Togdheer 2,428



Sool 2,898

Sanaag 4,776
Bari 1,911
Nugaal 3,337
Total 22,567

Analysis

Spatial analysis of this agent-based model is preliminarily aimed at identifying temporal trends of pastoralist
density both across the seasons of a year and between seasons separated by a decade of evolving terrestrial and
conflict variables. Somalia experiences four distinct seasons each year, as described above. Subsequently, the
months of January, May, August, and October were identified as representative midpoints of these seasons and

utilized in this spatial analysis.

By analysing the population distribution of pastoralist agents resultant of the ABM simulation during each of
these seasonal time points through Choropleth Mapping of population counts, Kernel Density Mapping, and
Standard Deviation Ellipses Analysis (SDE), a spatio-temporal understanding of movement is created based upon
what can be considered ‘natural’ seasonal dynamics. The comparison of population distribution during specific
seasonal periods between the years 2008 and 2018 heightens the analysis to appreciate how seasonal migration
patterns have changed over the decade. The juxtaposition of these outcomes with environmental variables, such
as artificial water sources, vegetation cover and conflict allow for associations regarding the interplay between

changes in resource availability, conflict dynamics and pastoralist movements.



All spatial data was projected in WGS 1894 UTM Zone 38N and all analysis was performed utilizing the ArcGIS

10.7 platform by ESRI.

Population Counts and Differences

Population counts were created by identifying the location of each pastoralist agent at the aforementioned time
periods and summed to generate aggregate population counts across the study region. These data were then
spatially joined with administrative districts within Somaliland and Puntland. Choropleth maps delineating
population counts per administrative district were created excluding those agents that lay outside of boundary
lines. Classification was done using Jenks Natural Breaks without justification between the two time periods, as
justification would obscure the significant difference in population counts in each district. Differences between
the January 2008 population counts and January 2018 and October 2018 counts were calculated to create a
change layer. These calculations were undertaken to explore the change in population counts between 2008 and
2018, both taking into account season (January 2008 verses January 2018) and the beginning and end of the
simulation. Choropleth maps were subsequently created, and justified Jenks Natural Breaks were applied to

create population change classifications.

Kernel Density Maps

Only a 10% random sampling of each of the regional populations were utilized in the ABM simulation, therefore
there are a great number of agents (i.e. pastoralists) that go unrepresented when population distribution is
mapped. Through the production of a kernel density surface, this underrepresentation is addressed by creating
a predictive distribution surface map of pastoralist populations given known spatial inputs. Population density is
calculated using a quadratic formula, seen below, with the highest weight ascribed to the known point location
and tapering to zero at the edges of the search radius with the predicted population at any given cell in the output

raster map being an accumulation of the values for each of the calculated surfaces.

Demeity = 1 Z”:s 1(dist,—)22
ensity = (radius)? S| pop: radius

For dist; < radius




Wherein: i=1,...,n are the input points; popi is the population field value of point |, and disti is the distance between
pointiand the (x,y) location (ESRI, n.d.). The cell size (x,y) is 0.0089831528, 0.0089831528 decimal degrees, which
is equivalentto a 1 km2. Given the UTM projection of the environmental basemap, the analysis was parameterized
to a planar method of measurement. By creating these kernel density maps of the pastoralist population over
the four seasons of 2008 and 2018, a spatio-visual interpretation of how pastoralist population has evolved over

the course of ten years and its seasonal permutations may be developed.

Standard deviational ellipse
An unweighted, standard deviational ellipse analysis was undertaken to characterize the spatial distribution -
specifically the location, dispersion and orientation (Wang et al., 2015) of pastoralists over time- utilizing classical

statistical methods with the following equations:

where

on () el 1

cov(y, ) wvar(y)

n

1
var(x) = - Z:(J:1 — -I')Q = I
i=1 i=1
n

cov(r,y) = %Z(,ﬂl —I)(yi—y) = %Z Tili
i=1

i=1
n

IS IR .9
wert) = 23w -9 = 1375
pa)

i=1

Wherein x and y are the coordinates for each pastoralist at each defined time-point j, {xbar, ybar} represents the
mean center for the features and n represents the total number of features (ESRI, n.d.). Given Rayleigh
distribution, the two standard deviations applied includes 98 percent of the features. Comparing the size, shape
and orientation of SDEs over four different seasons in 2008 and 2018 allows for the detection of relationships
between environmental variables and pastoralist distribution not necessarily captured by density mapping alone.
While SDEs have been utilized in the past to explore the relationships between environment and criminal activity

(Kent and Leitner, 2007 and Chainey et al., 2008), to characterize racial segregation (Wong, 1998), and to assist in



outbreak surveillance (Eryando et al., 2012), the application of SDEs to ABM outputs, specifically in the context of

pastoralist migration, is novel.

Results

The results of the ABM yielded the location of each pastoralist agent at every time step, along with its scouting
range, and the favorability score of the grid in which it inhabited. The following table (Table 4) quantifies the
counts of pastoralist agents within each administrative boundary at each seasonal time-point during the periods
chosen for analysis. In January 2008, Sanaag and Woqooyi Galbeed districts have the highest number of
pastoralists, with 4601 and 3547, respectively, but all districts had populations greater than 2000. In October
2018, after nearly eleven years of simulated environmental change, Togdheer and Nugaal (with 2576 and 2502
pastoralist agents), in the south of the country (Figure 3), have the highest populations, and there is a compelling
lack of pastoralists in Woqooyi Galbeed with only 73 inhabitants. In aggregate, there was a 52% decrease in the
pastoralist population during the simulation period, equating to a ‘drop out’ of over 1,000 pastoralist agents per

year.

Table 4. Pastoralist Agent Counts per Administrative District over time, a 10% sampling.

Administrative Pastoralist Population Counts
District
Total
2008 2018
Difference
Jan May Aug Oct Jan May Aug Oct
Bari 2405 2507 2447 2440 1574 1560 1528 1522 -883
Nugaal 2627 2555 2511 2519 2520 2522 25009 | 2502 -125




Sanaag 4601 4025 3692 3523 1784 1790 1777 1772 -2829

Sool 3405 4207 4299 4368 2591 2500 2345 2210 -1195
Togdheer 3179 3788 3818 3770 2391 2417 2465 2576 -603
Woqooyi 3547 2839 1997 2041 70 78 68 73 -3474
Galbeed

Awdal 2786 2458 2022 1855 171 166 157 153 -2633
Total 22,575 | 22,461 | 20,802 | 20,586 | 11,114 | 11,051 | 10,853 | 10,819 | -11756

(Includes those
that fall
outside of
specific

districts)

All districts portray a decline in pastoralist population counts, resultant of pastoralist agents ‘dropping out’ of
purely pastoralist cycles (Figure 3). However, certain districts have significantly greater declines in population
than others, with Nugaal demonstrating only a decrease of 125 pastoralists, and Woqooyi Galbeed having a
decline of almost 3,500. Also notable is the difference in population counts between administrative districts over
time. In January 2008, the difference in population count between the most (Sanaag) and least (Bari) populated
districts was 2,196, as opposed to October 2018 in which the difference between the most (Nugaal) and least

(Woqgooyi Galbeed) populated districts was 2,429. In general, the greatest decline in population per district was



noted in the north-east of the study region with very little change when accounting for seasonal variability

between January and October of 2018.

Pastoralist Population Distribution as Represented by Choropeth Maps
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Figure 3. Choropeth maps of pastoralist agent population count and count difference at each time point defined.

Kernel Density

Kernel density (KD) analysis for the four seasonal time points in both 2008 and 2018 demonstrates pastoralist
population density throughout Somaliland and Puntland as simulated by this ABM (Figure 4) with statistical
characteristics identified in Table 5. In January 2008, the density across the study area ranged from 0 to 0.55
agent per square-kilometer with a standard deviation of 0.71. The map in Figure 4A shows that the agent density
is fairly dispersed, but the highest densities are found in Awdal, the westernmost administrative region, while,
Bari, the easternmost administrative region has the lowest estimate density. It is important to consider that
January 2008 is the first month of the simulation, directly before which the agents were randomly generated in

each administrative region, so the spatial dispersion is likely a remnant of the agent generation.



Table 5. Statistics of pastoralist population Kernel Density Maps disaggregated by time point

Month/Year Minimum Maximum Mean SD
January 2008 0 0.55 0.049 0.073
May 0 0.96 0.047 0.085
August 0 1.1 0.046 0.093
October 0 1.1 0.043 0.09
January 2018 0 1.1 0.024 0.078
May 0 1.2 0.023 0.079
August 0 1.5 0.023 0.086
October 0 1.4 0.023 0.083

Four simulated months later, in the following May, the maximum population density increased to 0.96 agents per
square kilometer, without a large change in standard deviation. Certain high-density areas noted in January 2008,
specifically in the south of Nugaal and the northwest corner of Sool, persist as relatively dense areas throughout
the remainder of the simulation (Figure 4A). By August 2008, maximum density continues to increase, and
additional clusters begin to form in Togdheer along the Ethiopian border as well as near the coast in Sanaag.
Towards the end of 2008, high- and low-density locations appear to have reached homeostasis, with both large

scale spatial patterns and standard deviations of population density remaining similar.



By January 2018, the mean density of pastoralist agents has approximately halved (0.024 from 0.043) resultant
of pastoralist ‘drop out'. Areas of highest population density are now centralized predominantly within four
districts: Sanaag, Togdheer, Sool and Nugaal (Figure 4B). Certain early areas of pastoralist accumulation, such as
that in the south of Sool and along the Ethiopian border persist as the most densely populated. In general, as the
simulation progresses, pastoralists appear to tend towards clustering, with maximum densities at 1.5 and 1.4
pastoralists per 1km? in the final two seasons. These areas of high density seem to shift eastwards over the
eleven-year period, or inversely, the density of pastoralists in the western districts of Awdal and Woqooyi Galbeed

declined significantly.
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Figure 4.A and B: Kernel Density Maps of pastoralist population agent position at ascribed seasonal timepoints
as determined by the ABM simulation for 2008 (A) and 2018 (B). Density unit classifications have been justified

across all analyses.



These density maps have been overlaid with artificial water sources, which consists of wells, boreholes, dams,
and other artificial facilities. The artificial water sources were included in the ABM and were one of the pull factors
in the simulation. In Sanaag, Sool, Woqooyi Galbeed, the areas in which high numbers of water points are
situated, understandably evidenced higher densities of agent concentration during 2008. However, this
association was weakened when appreciating population density in 2018. Some relationship could be intimated
between high density areas and artificial water sites in northern parts of Sool and Sanaag, but as of January 2018,
there are no high-density clusters in the westernmost part of the country despite the presence of artificial water

sources.

Standard Deviational Ellipse

Standard Deviational Ellipses (SDE) were produced for four time points in 2008 and 2018, resulting in the creation
of eight SDEs (Figure 5 with statistical descriptions in Table 6 and 7). In 2008, there was minimal variation in the
SDE area for all four seasonal time points, which ranged between 578,912 km?2to 602,925 km2 with a mean area
of 595,865.25 km? and a difference of 24,013 km2. The centroid of the ellipses experienced a minor shift in a
Southeastern direction, with the rotation remaining consistent across seasons. This analysis indicates that
pastoral grazing in 2008 was spatially dispersed across the region and portrayed only minor seasonal variation

throughout the year.

Table 6. Characteristics of standard deviational ellipses in 2008

Month Area km?2 Centroid (X,Y) in meters Rotation angle
January 2008 578,912 694,477.91, 1,057,479.56 101.32

May 2008 601,005 696,424.92, 1,047,957.08 100.05
August 2008 600,619 711,125.21, 1,041,804.01 99.69

October 2008 602,925 712,926.92, 1,039,990.71 99.29




Table 7. Characteristics of standard deviational ellipses in 2018

Month Area km?2 Centroid (X,Y) in meters Rotation angle
January 2018 501,606 805,533.81, 996,938.63 89.25
May 2018 501,688 804,695.96, 996,794.97 88.24
August 2018 505,096 806,454.28, 995,321.20 88.39
October 2018 503,455 805,817.12, 995,725.31 87.77

In 2018, the area of the SDE ranged from 501,606 km?2 to 505,096 km? (Table 7) with a mean area of 502,961.25
kmz2 and a difference of only 3,490 kmz2. The centroid of the SDE moved slightly between the seasons and, similar
to 2008, the rotation only varied by a few degrees. As demonstrated in Figure 5, the SDEs calculated for 2018
largely exclude the district of Awdal, in the west. When comparing the 2008 and 2018 standard deviational
ellipses, these results support previous analysis that the overall grazing patterns of pastoralists have become
more compact, with a mean SDE areal decrease of 92,904 km2. Similar to the outcomes of the Kernel Density
Maps, the SDEs demonstrate a shift in pastoralist density towards the southeast. And while there is minimal
seasonal variability within years, it is notable that SDE areal differences between seasons were higher in 2008 at
24,013 km2 in comparison to only 3,490 km2 in 2018, evidencing a decrease in variability towards the end of the
model. It is important to note, however, that this analysis does not account for the variability within the 11-year

period and only considers the beginning and end years to capture the absolute change over time.



Pastoralist Population Distribution as Represented by Standard Deviational Ellipses
A Seasonal Comparison Between 2008 and 2018

Dnamar ALk Ly

bk

Legend

* Coas
DAug 18
Jmay s
[Juan s
[Joctos
Jawes
[Imayos

D Jan 08 Sources: Esri, HERE, Delorme, Intermap, incement P Corp., GEBCC, USGS, FAC,
I:l Admin 1 0 40 80 160 7 Beladwayns NPS, NRCAN, GeoBase, IGN, Kadas ter NL, Crdnsnce Survey, EsriJepan, METI, Esri
e Kilometers Chins (Hong Kong), swiss topo, Mapmylndia, ® OpenS p contri . and the GIS
SOM AL]AUser Community

Figure 5. Pastoralist population distribution as demonstrated by Standard Deviational Ellipses, disaggregated

seasonally for 2008 and 2018. Two standard deviations were applied to capture 98% of features.

Discussion

This model's findings show minimal seasonal variations within years of population distribution. These outcomes
are unanticipated, given the assumption that during dry periods when water and vegetation are more scarce,
greater degrees of migration would occur. It is feasible that the inclusion of water and vegetation proxy indicators

into a simple, non-weighted, favorability score masked any potential effects at this time scale. Further discussion



and validation of the weight of these variables in the decision to migrate needs to be undertaken to better model

any presence or absence of seasonal movement.

In general, these analyses do demonstrate compelling trends of consolidation, clustering and a large-scale spatial
movement of agent density in the south-easterly direction. Between April and December of 2016, Somalia
experienced a significant drought and tremendous food insecurity (FEWS NET, 2017). The districts of Sool, Sanaag,
and Bari were relatively spared, which may account for the general spatial trend of simulated pastoralists
migrating to the southeast as a whole and to Sool and Sanaag, specifically. While Awdal was also relatively less
affected, this region showed a significant drop in pastoralist populations within our ABM simulation, intimating
that further environmental, conflict or transactional factors were at play. Similarly confounding is the
manifestation of high pastoralist density in the south of Nugaal, where rainfall during this season was only 30-
40% of a thirty year average. The positioning of artificial water sources did appear to yield some influence over
pastoralist density in 2008, but these associations largely resolved by the end of the model period and do not
account for the persistence of this density location or the trends over time. A more rigorous interrogation of the
environmental favorability surface could yield an explanation for which variables, such as conflict, topology, or

private/public landholding swayed pastoralist dynamics.

Existing studies that use ABM to simulate pastoral mobility have typically used the availability of water and
pasture as drivers of migration. Water sources can include surface water, artificial sources, or a range of other
water sources. Some studies have even incorporated complex hydrological modeling and have incorporated
information on rainfall. The studies that consider vegetation and pasture availability most commonly incorporate
the Normalized Difference Vegetation Index (NDVI), which captures vegetation vigor in any given area. While NDVI
is a widely used vegetation index in academic studies because it is highly correlated with leaf-area index and
biomass, which are attributes of measuring greenness, it is acknowledged that soil reflectance interferes with
NDVI calculations, not accurately capturing the vegetative ground conditions. Due to the known limitations of

NDVI, this research instead uses SAVI to more accurately capture the vegetative cover of Somaliland and



Puntland, which is sparsely vegetated. Beyond water and vegetation, some have incorporated historical conflict

while others actually identify areas of possible contention instead.

Typically, studies have considered the incorporation of variables one by one, where the agent makes a decision
based on a decision tree. This study however, normalized all the variables to have values between 0 and 1, after
which they were aggregated to a single favorability score. The favorability score is considered in relation to the
score of the surrounding grid cells prior to the agents physically moving to another cell. While there is one
favorability score, the data layers can be weighted in a variety of combinations to understand the effects of
individual variables rather than the collective whole. Following the generation of ABM results, geospatial analysis
techniques were used to analyze the data. The integration of geostatistics and ABM is for this particular
application is not commonly documented, so the use of these methods and the generation of the results
contribute valuable information to the academic sphere and unifies the multiple drivers of migration through a

spatial and geographic lens.

In building the conceptual model, we invoked a number of disciplines for our assumptions. Social science,
climatology, conflict studies and spatial epidemiology all contributed to its development. Such a multi-disciplinary
approach is required to understand real-world complex ecosystems and for us, to ideally produce data that would
allow us to create inferences between change in terrestrial, interpersonal and transactional variables and

population movement and density.

Limitations and challenges

The model in theory includes a large number of agents making monthly decisions based on the influence of eight
variables over a 10-years period resulting in hundreds of thousands of potential data points, requiring a vast
amount of computing power. For us, this is limiting for two reasons: first, it required us to use a sample of agents,
introducing some degree of statistical error that we could not determine after running the model; second, we

could only look at beginning and end point outcomes (2008 and 2018) and not iterative trends (points in time)



over the study time period that could be linked to specific climate or conflict events. Arguably then, to get the
benefit of a full simulation, ABMs must have the computing power available and this fact could significantly limit

its field applicability.

The model also makes a number of assumptions about pastoralist behavior that while duly gleaned from
informed local non-governmental service providers, have not been scientifically validated or have an evidence-
based understanding of real-time migration beyond anecdotal observations. As a result, the variables are
weighted based on these assumptions. As such migration patterns cannot be fully validated. Without clear
behavioral and decision-making benchmarks, this makes the model output challenging to validate; rather,
validation is done visually using heuristics from the social science domain literature and expert opinion. That
said, the benefit of the agent-based model presented here provides some insight into pastoralist behavior and

further invites theory and generates hypotheses for deeper study.

Conclusion

The agent-based model, introduced here, is a useful tool to understand the behavior of individuals in a spatial
and temporal context. Short of tracking individuals prospectively and manually querying their decision-making,
the ABM, coupled with an ethnographic understanding of the factors and drivers of livelihood decisions, can
provide a dynamic view of population ecosystems. In the case of nomadic pastoralists in the Horn of Africa where
the history of seasonal migration lends itself to a simulated model, the ABM affords the ability to study the
complexities of individual attributes in an aggregated and collective fashion with the added benefit of exploring

layers of geographic and sociological variables.

In the humanitarian sphere, two critical independent and interdependent variables have the potential to trigger
migration: climate-related environmental conditions, of which there are several, and conflict. Somaliland, with

its long history of ethnic conflict over land use, its exposure to drought and water scarcity, and a basal level of



livelihood migration amongst its nomadic pastoralists, offers a crucible in which to explore how these variables

interplay in a model, assuming non-linearity and the need for non-parametric approaches to spatial analysis.

The use of ABM to understand pastoral migration in Somaliland and the ways it which it changes in response to
environmental variability and conflict highlighted several important findings. This model was developed with
limited data sources and capacity for large scale analysis, and still demonstrated the potential value added of the
methodology in understanding pastoralist migration. In an attempt to evolve this model into one that is better
representative of reality, the researchers intend to further refine the model, validating behavioural assumptions
and including information and decisional pathways regarding economic markets, the effects of livestock disease,
pastoral adaptation techniques, and resource depletion to develop a more holistic view of the pastoralist system

in Somaliland and Puntland.
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Appendix A: ODD+D Protocol

The ODD+D protocol documents information used during the modeling process. The ODD protocol (Overview,

Design Concepts, and Details) was developed to standardize the documentation of agent-based modeling (Grimm

et al, 2010). Muller et al. (2013) suggested the amendment of a section that outlines human decision making,

which is relevant to the ABM described in this paper. Therefore, the ODD+D protocol was applied to this study.

1. Overview
1.1. Purpose
1.1.1. What is the purpose of this study?
The purpose of this study is to understand the impact of seasonal, environmental
changes and conflict on the movement of nomadic pastoralists in Somaliland between
2008 and 2018.
1.1.2 For whom is the model designed?
This model is designed for humanitarian researchers studying the interaction between
conflict, environment, and migration and those studying human migration more
generally. This case study also adds to a growing body of literature addressing the value
of computer models in the humanitarian sector.
1.2. Entities, state variables, and scales
1.2.1. What kind of entities are in the model?

Each modeled agent in the simulation represents a nomadic pastoralist household. The
agent remains in a constant state unless the impact of exogenous variables is so severe
that the agent state changes from nomadic pastoralist to internally displaced person

(IDP).



1.2.2.

1.2.3.

The second entity in the model is the spatial environment. The environment is not only
a modeled entity but also drives the behavior and movement of the agents.

By what attributes (i.e. state variables and parameters) are these entities

characterized?

The nomadic pastoralists’ clan and ethnicity are identified according to the region in
which the agent is generated. The spatial coordinates of the agent's position are
recorded at each timestep in addition to the distance traveled to that location. Lastly,
the grid cell value corresponding to the agent's position is also recorded as an attribute.
If the agent state changes from nomadic pastoralist to IDP, the agent effectively exits

the simulation and no additional attributes are collected.

The entity representing the spatial environment is composed of aggregated variables
in grid cells measuring 1 km2. Each grid cell is characterized by a normalized value
between 0 and 1. The pixel value reflects the state of the environment as characterized
by the following variables: vegetation cover, water availability, terrain gradient, conflict
events, and the presence of ethnic boundaries.

What are the exogenous factors/drivers of the model?

The drivers of the model are largely captured in the spatial environment as described
above. The presence of water and vegetation are considered pull factors whereas
conflict, proximity to ethnic boundaries, and steep gradient are incorporated as push
factors in the model. Once the agent has identified the most favorable grid cell, it must
determine whether they are positions on private or public land. If it is public, they can
continue their actions, however if the land is private, the agent must establish a deal
with the landowner. If the deal is made the agent can remain on that parcel for the

duration of a season, if they cannot make a deal then they must continue to search for



2.

Design Concepts

2.1.

1.2.4.

1.2.5.

alternate land. If they are unable to do so within a given season, the agent state
changes from pastoralist to IDP and they exit the simulation.

If applicable, how is space included in the model?

The modeled environment is a spatial grid, where each grid cell measures 1 km?,
collectively covering the full extent of Somaliland. The spatial environment is artificially
created through the combination of GIS datasets and information derived from satellite
imagery. The individual data layers are incorporated into the spatial environment

through the following equation:

Pixel value = vl + v2 + v3 — (0.25xv4) — v5 — (0.25* v6)

Where,
v1 =normalized vegetative cover, as calculated with SAVI, where L=0.5
v2 = normalized surface water index (enabled in wet seasons)
v3 = artificial water point sources (enabled in dry seasons)
v4 = normalized terrain gradient
v5 = normalized conflict frequency

v6 = ethnic boundary

The additive pixel value is therefore representative of the condition of the artificial
environment, which is considered the primary driver of pastoral migration.

What are the temporal and spatial resolutions and extents of the model?

The variables are aggregated into a single environmental layer which has a resolution
of 1 km2 and whose full extent measures 490,000 km2. The simulation considers a

monthly time step and runs for 11 years between 2008 and 2018.

Theoretical and empirical background

2.1.1.

What entity does what, and in what order?




Every month, the agent considers a traversable distance in which it searches for a cell
with the highest value relative to the cells in the surrounding environment. The cell
value reflects the aggregation of environmental variables is composed of favorable
variables (high water and vegetation availability) and unfavorable variables (high
prevalence of conflict, proximity to ethnic boundaries, or steep terrain. Once the
highest grid cell has been identified, the agent moves to this location and is able to stay

there for the duration of the season (1 - 3 months).

Once an agent moves to a new grid cell, the agent determines whether they are located
on private or public land. If the agent is on public land, they are free to remain at that
location without restraints for the duration of a season. If the agent happens to be on
private land, the agent must negotiate a land-sharing deal with the local landowner. If
the agent successfully strikes a deal with the landowner, they are able to remain at that
location for the duration of the season. However, if the agent is unable to obtain access,
they are required to move to another grid cell within the same time tick and again
consider whether the new grid location is private or public land and repeat the process
described above. If the agent moves to grid cells in private land and is also unable to
make a deal on three separate occasions in any given season, the agent state switches
from pastoralist to IDP, at which point the agent exists the simulation.

Which general concepts, theories or hypotheses are underlying the model's design at

the system level or at the level(s) of the submodel(s) (apart from the decision model)?

What is the link to complexity and the purpose of the model?

Nomadic pastoralists primarily rely on livestock to support their livelihoods.
Pastoralism is therefore deeply intertwined with environmental conditions and is
heavily dependent on the availability of water and pasture. While nomadic pastoralists

typically traverse familiar environments, unpredictable changes in the landscape have



required many to travel longer distances to unfamiliar locations in order to find water
and pasture. The changing patterns of movement have at times resulted in ethnic
clashes and/or conflict over critical resources. It is therefore the purpose of the model
to better understand how conflict and changing environmental variables impact
pastoral migration. Through modeling these complex relationships, we hope to
develop a better understanding of how agent-based modeling may be used in
understanding complex humanitarian crises, and to identify what the gaps and
limitations of this methodology are. Of course, this model does not account for all the

complexities experienced in reality.

On what assumptions is/are the agents’ decision model(s) based?

To our knowledge, there is very limited publicly available data about nomadic
pastoralists in Somaliland. The majority of the data that does exist is often outdated.

For this reason, this model heavily relies on informed assumptions.

The researchers of this project relied on academic publications, grey literature, and
local knowledge to inform agent decision making. The following assumptions were
made in this model:
1) SAVI is the indicator used to indicate the presence of vegetation, which is an
assumed pull factor for pastoralists
2) Artificial water points and surface water are both used as a pull factor
3) We assumed that the presence of conflict, proximity to ethnic boundaries, and
slope in part influence pastoral migration. The likelihood of pastoralists
striking a deal with local landowners is assumed, as is the condition for
dropping out of pastoralism.
4) Distance scouted and traveled are derived from delphi consensus after

conversations with local experts who interact with Somali pastoralist



populations. The thresholds utilized in the model are assumptions derived

from these consensuses.

Why is/are certain decision model(s) chosen?

The agent decision model is largely based on heuristics.

If the model/submodel (e.g. the decision model) is based on empirical data, where does

the data come from?

Agent decisions do not come from empirical data and primarily rely on heuristics. Data
that comprise the environment and come from empirical sources are cited in the
Methods section of the article, Table 1.

At which level of aggregation were the data available?

The data used to inform agent generation was disaggregated by administrative regions.

More granular data at smaller administrative units was largely unavailable.

The variables included in the spatial environment were available at several different
spatial resolutions. For instance, the global surface water index was applied to data
from Sentinel 2, which captures data at 10 m resolution. The vegetation index was
calculated using data from MODIS Terra at 250 m resolution. However, to create one
continuous spatial layer, the data layers were aggregated to 1 km resolution. The lower
resolution was thought to adequately capture movement on a regional scale and also
minimized the time and effort required by the machines running the model.

What are the subjects and objects of the decision-making? On which level of

aggregation is decision-making modelled? Are multiple levels of decision making

included?
Decision-making is modeled on a household level that can then be aggregated to an

administrative level.



2.1.10.

2.1.11.

What is the basic rationality behind agent decision-making in the model? Do agents

pursue an explicit objective or have other success criteria? How do agents make their

decisions?

The basic rationale behind the agent decision-making process is that the agent must
identify a grid cell that is suitable for grazing, given a combination of factors. This is
done by seeking out the grid cell with the highest additive score in a random proximity
to the agent’s location. Once the grid cell has been successfully identified, the agent
must confirm that they are able to graze here, since the land may be privately owned.
If the agent is consistently able to occupy a grid cell without any problems, they are
successful in their mission.

Do the agents adapt their behavior to changing endogenous and exogenous state

variables? And if yes, how?

The agent's decision-making process remains constant, their pattern of movement
changes in response to the spatial environment.

Do social norms or cultural values play a role in the decision-making process?

Social norms do play a role in the decision-making process. Ethnic conflict is not
uncommon in Somaliland, which is why ethnic boundaries are considered in this
model. The assumption is therefore, the closer the agent moves to an ethnic boundary,
the higher the likelihood for conflict to occur. Additionally, pastoralists are known to
strike deals with landowners to gain access to pasture and water as an adaptation
technique.

Do spatial aspects play a role in the decision process?

Agent decision-making processes and movements are entirely informed by variables
that are spatially represented. Distance, terrain gradient, and the general land cover

conditions are all considered prior to agent movement. Agents move between 15 - 30



2.1.12.

2.1.13.

kilometers per timestep, which was determined through discussions captured at a
workshop in Nairobi, Kenya on June 3 - 4, 2019.

Do temporal aspects play a role in the decision process?

While the agent is able to move at every time tick, the agent is also able to remain at
any given grid cell for the duration of a full season, after which they will be required to
move. This encourages the agent to follow typical seasonal movement patterns.

To which extent and how is uncertainty included in the agents’ decision rules?

Uncertainty is included in the agents’ decision rules through the incorporation of
probabilities. Additionally, all the probabilities and even the equation of the additive
model can be modified to understand the agents’ behaviors under varied

circumstances.

2.2. Learning

2.2.1. Is individual learning included in the decision process? How do individuals change their
decision rules over time as a consequence of their experience?
Learning is not included in the decision process.

2.2.2. Is collective learning implemented in the model?
No

2.3. Individual sensing

2.3.1. What endogenous and exogenous state variables are individuals assumed to sense and
consider in their decisions? Is the sensing process erroneous?
Individual agents are assumed to sense the surrounding spatial environment
(exogenous variable) prior to moving in the simulation.

2.3.2. What state variables of which other individuals can an individual perceive? Is the

sensing process erroneous?

None.



2.4.

2.5.

2.6.

2.3.3.

2.3.4.

2.3.5.

What is the spatial scale of sensing?

The spatial extent of the sensing is determined through a randomized distance

between 15 - 30 km.

Are the mechanisms by which agents obtain information modelled explicitly, or are

individuals simply assumed to know these variables?

The individuals are assumed to know the variables they are sensing.

Are the costs for cognition and the costs for gathering information explicitly included

in the model?

No

Individual prediction

2.4.1. Which data do the agents use to predict future conditions?
The agent does not predict future conditions.
2.4.2. What internal models are agents assumed to use to estimate future conditions or
consequences of their decisions?
N/A
2.4.3. Might agents be erroneous in the prediction process, and how is it implemented?
N/A
Interaction
2.5.1. Are interactions among agents and entities assumed as direct or indirect?
In this first model iteration, there is no agent interaction.
Collectives
2.6.1. Do the individuals form or belong to aggregation that affect and are affected by the

individuals? Are these aggregations imposed by the modeler or do they emerge during

the simulation?



A single agent is considered a singular household unit. The agents do not aggregate

during the simulation and are affected individually.

2.6.2. How are collectives represented?

N/A

2.7. Heterogeneity

2.7.1. Are the agents heterogeneous? If yes, which state variables and/or processes differ

between the agents?

The agents are minimally heterogeneous. The agent state variables include geographic
position, clan, and ethnic affiliation. Due to limited, outdated, and often unreliable
information, no further agent characteristics were included in an effort to minimize

assumptions and uncertainty.

2.7.2. Are the agents heterogeneous in their decision-making? If yes, which decision models

or decision objects differ between the agents?

Agents are homogeneous in their decision-making.

2.8. Stochasticity

2.8.1. What process (including initialization) are modelled by assuming they are random or

partly random?
The agent start locations are randomly generated with two constraining rules as
described in section 2.9.1

2.9. Observation

2.9.1. What data are collected from the ABM for testing, understanding and analyzing it, and

how and when are they collected?

At every time tick, the following data are collected: 1) geographic position of the agent,

2) the score associated with the pixel within which the agent is situated, and 3) the clan



3.

and ethnic affiliation of the agent. The spatial analysis of these attributes will provide
insight about where and how far agents move and what the relationship is between

agent movement and individual variables.

2.9.2. What key results, outputs or characteristics of the model are emerging from the
individuals? (Emergence)
We anticipate that varying spatial and temporal patterns of migrations will emerge
from the model in response to changing environmental and conflict factors.
Details
3.1. Implementation details
3.1.1. How has the model been implemented?
The model was implemented using Java in Repast.
3.1.2. Is the model accessible, and if so where?
The source code is stored on GitHub.
3.2 Initialization
3.2.1. What is the initial state of the model world, i.e. at time t=0 of a simulation run?
The state of the model at t = 0 mimics the environment as it was in January 2008. The
agents generated at t = 0 are generated randomly throughout Somaliland with two
conditions: 1) Agents cannot be in areas that are labeled as water bodies or sand, and
2) agents cannot be within 14 km and 4 km radius from a major city or settlement,
respectively.
3.2.2. Is the initialization always the same or is it allowed to vary among simulations?
The simulation initialization is always the same.
3.2.3. Are the initial values chosen arbitrarily or based on data?




The initial values of the simulation environment are based on aggregated GIS and

remotely sensed data that were captured at the time of the simulation date.

The number of agents generated per administrative units are informed by data

captured by UNPF in 2013.

3.3. Input data

3.3.1.

Does the model use input from external sources such as data files or other models to

represent processes that change over time?

The spatial environment changes on a seasonal basis, these files were preprocessed

by analysts. The input variables and their sources are listed below:

Agent characteristics | Population distribution is derived from a UNFPA

Population Survey conducted in 2014.

e Vegetation | SAVI as calculated on imagery collected by the MODIS Terra
satellite

e Conflict | Armed Conflict Location & Event Data Project

e Artificial water sources | Somalia Water and Land Information Management

e Natural water sources | NDWI layer obtained from Google Earth Engine

e Slope | Calculated from DEM obtained from DIVA GIS

e Ethnic boundaries | Obtained from the Kenya Somalia Consortium

e Public/Private land delineation | Point data obtained from HDX, from UNOCHA



