THE WORLD BANK GROUP ARCHIVES

PUBLIC DISCLOSURE AUTHORIZED

Folder Title: Lal, Deepak - Articles and Speeches (1971) - 1v
Folder ID: 1652091
Fonds: Records of Office of External Affairs (WB IBRD/IDA EXT)

Digitized: February 18, 2014
To cite materials from this archival folder, please follow the following format:
[Descriptive name of item], [Folder Title], Folder ID [Folder ID], World Bank Group Archives, Washington, D.C., United States.

The records in this folder were created or received by The World Bank in the course of its business
The records that were created by the staff of The World Bank are subject to the Bank's copyright.
Please refer to http://www.worldbank.org/terms-of-use-earchives for full copyright terms of use and disclaimers.

THE WORLD BANK
Washington, D.C.
© 2012 International Bank for Reconstruction and Development / International Development Association or
The World Bank
1818 H Street NW
Washington DC 20433
Telephone: 202-473-1000
Internet: www.worldbank.org

LaL, Deppax - Artickes and speoches (1971)

DECLASSIFIED
WBG Archives

ADJUSTMENTS FOR TRADE DISTORTTONS IN PROUECT ANALYSIS

by
Decpak La]

Research Seminar

A seminar will be held on Friday, October 1, at 4 p.m. in Room Cl006 "Adjustments for Trade Distortions in Project Analysis."

Author:
Chairman:
Discussants:

Deepak Lal
 P. D. Henderson
 Montek Singh Ahluwalia and Helen Hughes

Copies of the paper are available in Room B1215, Extension 4004.
domestic nelfare, given existing resources, technology and foreign
 wituers $\sqrt{2}, 4,6,11,23 \overline{7}$ thek in making futwe investryent decisions, "chadow" prices, which reflect the true social coets and benefits of inputs and outpats be used sather then the distasted manket prices. Thereby the country wotid be able to develop along the Itres of its comparative advantage, which are obscured by the verying, inopima, and often "ad hoc" controls on foreign trade. A number of ways in which these trade distortjons can be taken into secount in project analysis have been suggested in the Iiterature $A, 2,3,6,9,11,12,37$. Sone attompts heve been made to tiy and relate these differing methods to show what differences there ore, if any, in the assum ptions on which they are based $[\overline{1}, 2,3, \overline{6} /$ ir my viow, however, these treatments are not completely sajisfectory, in pinpointing (a) the nature of the
adjustments for trade distortions which should be made in project analysis; (b) the particular assumptions underlying the different procedures which have been suggested; (c) the differences in using the procedures in practice. This paper seeks to first set out in terns of simple comparative static, trade theoretic, general equilibrium models, the nature of the adjustments which are required (Section 1); secondly, to show the implicit or explicit assumptions the alternative procedures make about the adjustment process and/or various structural features of the economy (Section II); thirdly, to evaluate the usefulness in practice of the alternative methods (Section III).

I. Some Simple Theory

In this paper we are concerned with project analysis in the presence of trale distortions. As such we ascume avoy all othor dis. tortions in the economy, which is thas assumed to cortespond to the periectly competitive neo-classical paradigm in all other respects. In the absence of all distortions (including trade distortions) simple welfare economics tells us that, resource allocation based on market prices would be optimal. Moreover, the prices of goods and factors: wouici equal and equate the marginal social cost (isc) of producing and marginal social value (iSV) of using the relevant goods/factors. In general, distortions in factor and/or comodity markets (which includes the markets for foraign goods and services) drive a wedge between the MSV and IHSC of a good/factor. The market price (P) of the relevant good/fiactor will then equat either the MSV or MSC (or neither, in some cases of rationing!) of the good, but will not equal and equate both MSV and MSC. The first best solution in such cases is always to
correct the distortion at its source, so that the relationship $\mathrm{P}=\mathrm{MSV}=\mathrm{MSC}$ holds for all goods/factors. Resource allocation would then be optimal at market prices and project evaluation with a system of 'shadow' pricing would be redundant. However, especially in developing countries, for various political and/or administrative reasons, it may be infeasible at least in the short run, to achieve the first best solution, and project evaluation using 'shadow' prices may be required, as a sec and best method, to move the economy in the direction of optimal resource-allocation.

Non-optimal trade controls result in two broad sets of distortions in the domestic price structure. These are distortions in relative prices within the traded goods sector and distortions in the relative price of traded to non-traded goods. To demonstrate this. and to pinpoint the ensuing adjustrnents which have to be made to randeet prices, to obtain the 'shadow' prices for project evaluation in the presence of these distortions, we consider two highly simplified, trade-theoretic general equilibrium models.I/

1/ In thinking about the problems discussed in this paner I have been much influenced by Mex Corden's: The Theory of Protection (OUP, 1971); and the simple two and three good models which follow are based on this work.

Case . . - Two Traded goods produced and Consumed

We first consider the case where there are just two goods, an importable M and an exportable X, being produced domestically with fixed stocks of capital K and labor L. Making the small country assumption, the foreign (border') prices of the two goods $P_{y f}, P_{m f}$ are fixed and given. If there is free trade, then (from Samuelson's theorem on the correspondence between factor and comnodity prices) the relative prices of the two factors K and L are uniquely determined. If even a single domestic money price of the two commodities (X, M) or two factors (K, L), or the exchange rate (which converts domestic money prices into foreign money prices) is now given, all the other domestic money prices will be uniquely determined.

Horeover, a change in the foreign exchange rate would have no real effects on the economy as it would affect only the absolute level of domestic money prices, without effecting the relativ'e 'border' price structure. Furthermore, a balance of payments deficit in this model cannot be cured by exchange rate changes, as the expenditure switching effects of a de(re)valuation are non-existent, because a de(re)valuation alters the domestic pxices of X and M by equiproportionate amounts. The only cure for a balance of payments deficit would be expenditure reduction. Furthermore, in this case, the optimal pattern of production and of trade will be uni.quely determined by the given world ('border') prices of the two commodities.

The donestic market prices of goods and factors would also be their "shadow" prices, and investment decisions based on them would be optimal.

Now suppose that a tariff of t_{ρ}^{\prime} is imposed on the importable. The exchange rate renains fixed. This will change the domestic relative price of the two commodities (X, M) from their border "relative" price, which will induce changes in domestic production and consumption, and in the domestic factor price ratio. Moreover, assuming that the government maintains internal balance of appropriate fiscal and monetary policy, total domestic expenditure (measured at the domestic relative prices existing in the free trade situation) will have fallen. Both imports and exports will shrink. All this is shown in the standard two factor - two commodity international trade theory diagram in Fig. 1.

Suppose we are now asked to evaluate the relative desirability of a marginal investment project for producing X or M, in the tarjff distorted situation. At the existing domestic market prices, there is nothing to choose between the two projects. Howeven, the tariff has introduced a distortion which does not enable us to maximize feasible welrare. It has, as it were, introduced a wedge between the ISSC of producing and the ISV of using a unit of foreign exchange. The former is given by the domestic resource cost of a unit of exports, the latter by the domestic price (value) of a unit of imports to consumers. Valuing goods and factors in domestic currency, one unit of export earns, say, $\mathrm{P}_{x f}$ in foreign currency which converted at the official exchange rate, e, yiclds a domestic value of $e_{x f}$. But this understates the benefit from the $P_{x f}$ units of forejgn exchange obtained by exporting.

For if the foreign currency price of M is $P_{m f}$, this will enable imports of $P_{x f} / P_{m f}$ units, whose donestic value, given the tariff of $t \%$, is $e(1+t) P_{x f}$. The domestic social value of one unit of exports therefore is $e(1+t) P_{x f}$. If we now evaluate the project, in terms of domestic currency, taking the shadow 'price' of the X good as $e(1+t) P_{x f}$ Lthe if good's domestic price is $e(1+i) P_{m f}$, and this is also its 'shadow' pricel.s we will find that production of X relative to M is more profitable at the existing domestic factor prices. Production decisions taken in line with this shadow price will move the econony towards the optimal production point, P in Fig. 1. This factor $e(1+t)$, is sometimes identified with the shadow exchange rate (S.E.R.). It is an exchange rate in the sense that the tariff has resulted in 3 non-unified exchange/rate. There are two different effective exchenge rates which apply to imports and exports that is rates which convort domestic money arices into foreign money prices of the two goods 7 e for export; and e(I+t) for imports. Optimolity requires a unified exchange rate. Hence the price of exportsmus'; also be multiplied by e(l+t) to get the right investment decision, or alternatively all foreign exchange values have to be multiplied by this S.E.R., e (1+t). This will restore the correct 'shadow' relative price structure of the two goods to the 'border' price one.

But equivalently, we could have taken the value of M net of its tariff rate (t), and we would have got the same result. Whether we choose to use an exchange rate of $e(1+t)$ or e, to convert foreign prices into domestic prices is irrolevant, in this model, as long as we get the correct relative valuation of the two goods which is
given by the relative 'border' prices. If we had decided to use foreign currency as our numeraire we mould have just taken the foreign currency prices of the two goods as our "shadow prices", and converted the domestic factor prices into foreign exchange (fe) equivalents. Note that in this case to make the right choice between X and K, it is irrelevant whether we use the existing factor prices and convert them at the official exchange rate of (e) to get their foreign exchange equivalents, or at the SER of $e(1+t)$.

If in the post-protection situation we have the following cost conditions,

$$
\begin{align*}
& A_{l_{m}} W+A_{k M} R=e P_{m f}(1+t) \tag{1}\\
& A_{1]} W+A_{k x} R=e P_{x f}
\end{align*}\left\{\begin{array}{l}
\text { (}
\end{array}\right.
$$

Where $A_{j . j}$ is the input of the $i^{\text {th }}$ factor ($i=K, L$) in the $J^{\text {th }}$ industry ($J=X, I I$) and W and R and the wage and rontal rates.

Assuming fixed coefíicicnt,
In free trade we have

$$
\begin{array}{ll}
A_{\mathrm{ln}} W^{*}+A_{k m} R \%=e P_{m f} \tag{2}\\
A_{I x} W^{*}+A_{k x} R^{*}=e P_{x f} & \text {) }
\end{array}
$$

where starred values represent the free trade factor prices.
If we use (1) then, using SRR of $e(1+t)$, we get the 'social. costs

$$
\begin{align*}
& \left.A_{D n} W+A_{k m} R=e P_{n f}(1+t)\right) \tag{1.}\\
& \left.A_{l x} W+A_{k x} R<c P_{x f}(1+t)\right)
\end{align*}
$$

If we deflate both the W and R terms by (l+t) in (1'), we still get the production of X as more profitable than M, or alternatively if we use the values \vec{W}^{*} and R^{*} in both industries as in (i) we still get X as more profitable than M. Alternatively working in foreign currency, we would have from (2).

$$
\begin{aligned}
& A_{I m} \frac{W^{*}}{e}+A_{k m} \frac{R_{e}^{*}}{e}>P_{m f} \\
& A_{1 x} \frac{W^{*}}{e}+A_{x f} \frac{R^{*}}{e}=P_{x f}
\end{aligned}
$$

and again X is relatively more profitable than 11 .

In this simple model, where only traded goods are produced and consumed, therefore, the only adjustment required to get the right investinent decisions, for moving the economy to the optimal production point P, in Fig. 1, is to correct the distortion in the relative price of the two traded goods. This can be done by 3 equivalent methods.
(1) using domestic currency as the numeraire and using the effective jmport exchange rate, (that is the rate which converts the forejign currency price of imports into domestic prices, e(l+t)) as the S.E.R., for valuing all foreign currency transactions. This is the method suggested by a number of writers, UNIDO $[13 \overline{/}$, Harbergee ${ }^{r}$ [6]., Schydlowsky, [12].
(2) Using foreign currency as the numeraire, and taking the foreign currency 'border' prices as the shadow prices of the traded goods, and deflating the domestic factor prices by either the S.E.R.
or official exchange rate to get its(fe) equivalents. This will be the Little- Mirrlees procedure [11$]$, in this case.
(3) working out the domestic resource cost per unit of foreign exchange earned/saved by producing another unit of X / M, and comparing the two ratios with (in this case) the official exchange rate. From
(1) for M this is

$$
\frac{A_{1 m} W+A_{k m}^{R}}{P_{m f}}>e
$$

for X, it is

$$
\frac{A_{1 m} W+A_{k m}^{R}}{P_{x f}}=e
$$

and again X will be preforred. This is the proceclure suggested by Bruno [4] and Kmiger [9].

Case 2: Two Traded, One Non-Traded Good Produced and Consumed

The above model has however been extremely simplified, - insofar as there have been no non-traded goods in the model. The introduction of these redically changes the effects of exchange rate alterations on resource allocation, and introduces another distortion which is caused by the protective structure. In addition to the distoxtion of the relative prices within the traded good sector (which was the only distortion we had ir Case I), we now have a further distortion as between the relative price of traded to non-traded goods. To see this, and the relevant adjustments necessary for project evaluation; we expand the previous
model, by including a non-traded good N, which is domestically produced and consumed. We maintain our assumptions of the absence of intermediate inputs and the lack of any domestic distortions apart from the tariff on M. (These are no distortions in foreign trade given our assumption of fixed and constant terms of trade). We now observe the economy; with domestic prices, $E P_{x f}, E P_{m f}(I+t)$, and P_{n} of the three goods X, M, and N, in the post-protective situation, with an exchange rate e. The econony is in internal and external balance, with W and R as the domestic money wage and rental rates of the two factors of production K , and L (Row 1, Table 1).

We now have the following production relationships.

At the existing domestic market prices, we are indifferent whether a marginal increase in domestic resources is invested in X, Mor N. However, as we hove noted in Case I, valuation at domestic prices, understates the relative social benefit from prociucing X to K, and the adjust. ment discussed for Case 1, is necessary to correct this; either of the three methods outlined vill give the correet investment decisions, comparing X to 1 . What of the comparison of investments in N and in or N and X ? This depends crucially uoon what we expect will haven in the future to the protective structure.
(a) First let us assume that the existing protective structuce will remain unchanged. As 'ex hypothesi' a marginal investment project will not change the $W^{\prime} s$ and $R^{\prime} s$ in (3), the MSC'sof production are given by the costs at market prices, on the LIIS of (3), and the only correction we need to make is for the value of the outputs (the RUS of (3) to reflect the liSV's of the 3 goods. In domestic currency, the $\mathbb{M S V}$ of M is $e P_{m f}(1+t)$, the MSV of X, (for the reasons given in Case 1 above) is $\mathrm{eP}_{\mathrm{xf}}(1+t)$, the MSV of N is P_{n}. Thus, in this case, the only adjustment which is required is, still, just the correction for the distortion between the MSV and MSC of using and producing a unit of foreign exchange. It is the same as in Case 1 above, and the use of an S.E.R. of e (I+t) on the lines of Case I, will again give the right answer - the production of X, at 'shador' prices, will be more porfitable, relative to both N and N .

If on the lines of the LI procedure, we were using foreign cursency_ as our numerajere, the value of the two traded outputs would be given by $P_{m f}$ and $P_{x f}$. What about the fe equivalents of the MSC's and MSV of the two factors and the non-traded good N? First consider the factors, say labor. We know that the value marginal product of labor in all the industries is equal to the wage. In the M industry this means that

$$
\begin{equation*}
\frac{\delta L}{\delta I I} P_{m f}=e \frac{W}{e(I+t)} \tag{4}
\end{equation*}
$$

the IHS is the value marginal product of labour in terms of foreign currency, and we thus have on the aHS, the price of labour (the waze) in tems of foreign currency, Similarly the price of capital in terms of foreign currency will be $\mathrm{R} / \mathrm{e}(\mathrm{I}+\mathrm{t})$. Second, consider the valuation of N in terms
of foreign currency. We know that the correct relative MSV's of M and iv in domestic currency are given by $\mathrm{eP}_{\mathrm{nf}}(1+t) / \mathrm{P}_{\mathrm{n}}$. The foreign currency value of the numerator is P_{mf}. Hence the foreign currency value of the denominator must be $\mathrm{P}_{\mathrm{n}} / \mathrm{e}(1+t)$, if the relative foreign currency values of M and N, are to reflect their correct relative MSV's. We could equivalently have derived the 'shadow' price of N, in terms of foreign curmency by following the more general LM procedure of valuing the inputs of the N good in terms of fe equivalents. Thus from Equations (3) and (4), we have the 'shadow'price of N, equal to

$$
\frac{A_{1 n^{W}}}{e(1+t)}+\frac{A_{k n^{R}}}{e(1+t)}=\frac{P_{n}}{e(1+t)}
$$

Thus, we get the result, that, to get the correct MSV's and MSC's in terms of foreign eurrency, the values of the domestic factors (i, R) and goode (P_{n}) must all be deflated by $e(l+t)$, which is the Spl to be used to convert foreign goods values into domestic currency in the domestic currency as numereire method. The iwo methods (UIDDO/WS, and LH) are therefore equivelent in this cese too, as they are in Case l, and involve nothing more than a change in numeraire.

What of the third method (B / K)? It can provide us no answer, . . when we are comparing investnent projects which produce if with those producing X or 4 . Though as before, it will be equivalent to IN and UNIDO/HS, when compering production of X or h .
(b) Let us next assune that we expect that the protective Structure will be ranoved in the future. What will be the relevant 'shadow' prices we should use, in evalvating current investment projects for producing X, 11 ox N ?

Clearly, the relevant shadow prices will now be the prices of the goods and factors in the free trade situation.

To determine these prices, we consider what would happen to the prices of goods and factors in our model economy with the removal of the tariff on M. The resulting changes are best considered in two distinct stages. In the first stage, we assume that all other domestic prices, the exchange rate, and domestic expenditure, remain unchanged. With a reduction in the price of M by t\% (the tarjff rate), the relative domestic prices of the 3 goods X, M and N will change. With a fall in the price of M relative to both X and N , there will be a shift in domestic consumption from X and N towards K, and in domestic productive resources from N to X and II. Now consider the markets for M, X and N . Tn the market for N there will be excess deriand, whilst in the markots for X and N there will be excess supply. Unless the excess demand for M is matched by an equivalent excess supply of X (an exceptional circunstance) normally, there will tend to be a balance of payments deficit, given by the difference between the excess demand for M and excess supply of X. What is more, from Walras' law, this net excess demand for traded goods must be exactily equal to the excess supply of the non-traded good N. In the next stage therefore, to restore equilibrium it will be necessary to cure the balance of payments deficit. To do this, it is necessary to cure the net excess demand for tradeables which is equivalent to curing the excess supply for the non-traded good 11 . This requires a fall in the reiative price of the non-traded to the
two tradeable goods. This change can be brought about by two altemative adjustment mechanisms (or a combination of both). The first is with the exchange rate fixed, but with the domestic money price of iN flexible. (This is the 'classical' adjustment mechanism). The other is with the price of N fixed, but with the exchange rate flexible. In the first case, the price of \dot{N}, will fall. from P_{n} to P_{n}^{*}, with the domes sic prices of X and M given by $E P_{x f}$ and $e_{m f}$, at the fixed exchange rate e. As a result, the domestic pricos of the three goods, in the free trade situation will be different than those in the protective situation (see Table 1, Pow 1, 2), which will result in resource allocation effects which will lcad to changes in factor prices; let these free trade factor prices with the price of iv flexible and the exchange rate fixed, be π^{*} and R^{*} ?

If the adjustment mechanism is via excharge rate flexibility, then at the now equilibrium free trade exchange rate $e^{\frac{3}{3}}$, the domestic prices of X and 11 will be $e^{*} p_{x f}$ and $e^{*} p_{\operatorname{mf}}\left(e^{*}, e\right)$, and the price of the non-traded good will be the same as in the protection situation, P_{n}. (See Table I, Row 3). Again, as the relative prices of the three goods are different in the free trade and protection situation, the resulting resource allocation effects will lead to a change in factor prices, say to $W^{* \%}$ and $\mathrm{F} \%$. It is shom in Appendix I, that in general $\frac{W^{*}}{R^{*}} \neq \frac{W^{*}}{i^{* *}}$, nor is the necessary fall in the price of IT,

2/ It is shown in Appendix I, that the change in the price of Nif will be equal to the change in the price of H, if the demand and supply elasticities for in are equal. In such a case, it will be relatively
 in this caso there will be no change in the relative factor price ratio.
(with the exchange rate fixed) equal to the required devaluation (change in the exchange rate from e to e^{*}), with the price of N fixed .

Thus the relative prices of goods and factors which we should use to evaluate a marginal investment project will differ, according to which assumption we make about the adjustment process for changing the relative price of traded to non-traded goods. Though the relative rankings of the 3 goods in the free trade as compared with the protection situation will be the same.

Assuming, that, we know or can guess at the price changes (in W, R and e or P_{n}), and assuming the same adjustment mechanism; then either of the two alternative methods of using, domestic currency as the numeraire and a 'shador' exchange rate, ow foreign currency as the numoraire and the LM method, will give the same ranking of the relative social profitability of investments in the three industries M, X and N. The third method (Bruno) again using the relevant P_{n}, W, and R's, willl be able to rank the two traded goods, by comparison with the relevant exchange rate (e in Row II, and e" in Row III) but will be unable to say anything about the relative desirability of investments in the non-traded good N .

This model can be expanded to include non-traded inputs, and traded inputs. Appendix II, considers the changes in a model with Two Traded Goods Produced and Consumed and One Non-Traded Good Produced and Used as an Intermediate Input. As is shom, therein, this case is similar to Casce 1. The internediate good merely serves as an indirect means of using the domestic factors capital (K) and labour (L). Donestic
relative factor prices are again uniquely determined by the fixed and given relative commodity prices, which are given by "border" prices. A tariff on M, again, merely distorts the domestic relative prices of traded comnodities. Given this distortion, the relative factor prices are still uniquely determined, independently of domestic demand conditions, by the domestic prices of traded goods alone. With the removal of the tariff the relative factor prices will change. Then, assuming the exchange rate is fixed, the price of \mathbb{N} will be uniquely determined. Alternatively if the price of N is fixed, the necessary exchange rate change will again be uniquely determined by the production relationships alone. All these points are proved in Appendix 2.

The adjustmonts in project analysis which are necessary in this case will be similar to those in Case 7. above. Once again exchange rate changes will not have real resource allocation effects. Balance of payments disequilibrium can only be cured by expenditure reduction, and not expenditure switching.

We could go on to consider more complex and general models with traded and non-traded intermediate goods, and complex systems of taxes and subsidies on exports. However, for our purpose of comparing alternative procedures for project selection, the above two models are sufficient to bring out the essential points which we consider in the the next section.

II

Alternative Procedures - Theory

We now compare the various procedures which have been suggested. for project evaluation in an econory with sub-optimal trade controls.

1) The untpo, Harberger, Schydlowsky (UHS) (10, 6, 12, 13)
shadow exchange rate. These procedures only correct for the distortions in relative prices within the traded goods sector. Taking the existing relative price of non-traded to traded goods as given, their aim i.s to correct for the distortions in the relative prices of traded goods caused by the existence of non-unified exchange rates. Thus implicitly, it is our Case : 2, (A), with the protective structure unchanged (which as we saw above, reduces to Case l, in terms of estimating shadow prices), which is the relevant model for these procedures.

3/ See UNIDD p. 85-86, Herberger p. 241, Schyd.lowsky p. 2-4.

The SER being derived as the HSV of foreign exchange in the protection situation which, in our simple model, is $e(1+t)$. The general iormla for this case is provided in Becha ond Taylox (1), and it is "ue keighted sun of domestic prices of traded goods, divided by a similar weighted sum of world prices, the weights in each case being the marginal changes in imports and exports induced by the project" (i, p. 205).
2) The Bacha and Taylor (BT) (1), 'equilibrium'exchange rate - The relevant model for this procedure is our Case II (3), with the protective stmucture removed and equilibrium maintained by variations in the exchange rate and with the price of the non-iraded good $\left(P_{n}\right)$ ixed. This procedure takes account of the distortions within the traded good sector and those between the traded and nontraded goods sector, cansed by the sub-optimal trade controls.

The equivalence of the BT formula for the equilibrium exchange rate with the devaluation rate derived for Case II (B), (in Appendix 1.) is shom in Aprondix 3. From our discussion in the
preceeding section of this case, it is clear that it is not sufficient to just calculate this equilibrium exchange rate, we also have to determine the new relative factor prices ($W^{* *}, R^{* *}$) in the new free trade situation. Without calculation, and use of these, in conjunction with the 'equilibrium' exchange rate, the resulting project evaluation rules would be incorrect. These points are obscured in the discussion by Bacha and Taylor.
3) The Bruno - Kruger (BK) $[4,9]$ test - computes the domestic resource cost of the net foreign exchange earned/saved by a project. It is thus only applicable to projects whose outputs are traded (or for non-traded goods which are close substitutes for traded ones). If the net foreign exchange saved/'earned (taking account of direct and indirect inputs) by the project (in foreign curency) j.s F dollars and if the total (direct and indirect) resourge cost is D rupees the Bruno ratio is $\frac{R S D}{\$ F}$, and this is clearly like an exchange rate, which converts domestic currency into foreign currency. It gives the exchange rate at which the project would be acceptable. If the economy was in equilibrium in free trade (with no distortions domestically or in forcign trade), and the market exchange rate were e^{*}, then projects could be selected by using $\frac{D}{F} \leqslant e^{*}$ as an investment criterion for tradeable goods. The D and F terms being valued at market prices. If, however, as is our concern, we want to evaluate projects in an economy with sub-optimal trade controls, there is the problem of what prices to use in determining $D, ~[F$, given the small country assumption, being stilll deterrined by given world prices. 7 ,
and what cut-off exchange rate (e) to use to select projects. This clearly depends upon what alternative assumptions we make about (i) whether there will be trade liberalization in the future and (ii) whether with trade liberalization external balance will be maintained by exchonge rate flexibility or domestic price flexibility, as discussed in Case 2, in Section I above.

Firstly, if it is assuned that the protective structure will remain unchanged, then cleariy Case 2 (A) is the relevant model, and we will, because of the distortion within the traded good sector, have $\stackrel{D_{x}}{\mathrm{~F}_{\mathrm{X}}}$ for exports less then $\frac{D_{m}}{\mathrm{~F}_{\mathrm{m}}}$ for imports, the D_{i} naturally being evaluated at the domestic prices in the protection situation. Comparisons of D_{x} / F_{x} and J_{m} / F_{m} with the official exchange rate are clearly irrelevant in this case, for choosing projects. The relevant comparison would sech to be the effective exchange rate for exports D_{x} / T_{X}. If, however, the supply curve for exporis is upward sloping D_{0} / F_{x} will rise towards $D_{\text {nl }} / F_{\text {In }}$ with an increase in production of exports. So that, in each case we would have to recalculate the marginal D_{X} / F_{X}, with which the project to be appraised must be compared. A rough and ready method would take an average between D_{m} / F_{m} and D_{x} / F_{x} as the cut-off exchange rate for selecting projects. Note that both these alternative methods of determining the cut-off rate will give different answers for project selection from those derived by using the UHS shadow exchange rate. The latter, would multiply the F component by the SER, say II. The criterion for acceptance would be TIF - $D \geqslant 0$, or equivalently $\frac{D}{F} \leqslant \overline{I J}$. The Brum and UHS methods would thus only give identical answers if II was taken as the cut-off exchenge rate for the Bruno test. But from our discussion of the Ulis, we know that $I I=D_{m} / F_{m}$,
so that, for the two procedures to be equivalent the effective inport rate would have to be taken as the cut-ofi rate for the Bruno ratio, in project selection.

Secondly, if it is assumed that the protective structure will be removed and equilibriun maintained by exchange rate changes with the price of N fixed, then the relevant cut-off effective rate is the B \& T 'equilibrium' exchange rate (our \hat{e} in Appendix 2), and in calculating the D, primary factors should be valued at their prices in the free trede situation, and not at the existing market prices in the protection situation. The procedure would now be equivalent to the $B T$ procedure. Alternatively, if, the exchange rate is inflexible but the domestic price of N is flexio? , then the relevant cut-off rate for the Bruno criterion will be the existirg official exchange rate e, but it will be necessary to estimate the prices of N , and the primary factors, when the protective structure is removed.
(4) The Little-irriees (IN) Nothod - takes foreign currency as its numeraire, values tradable inputs and outpats at their border prices (given and constant in our models) and those of non-tradables by breaking them dow into tradables and primary factors. The foreign exchange value equiyalents of the latter are detersined by valuing the marginal product of these factors in terms of foreign exchange. This method is, in principle, the most general of the onss we have been considerjng. Unlike the Bruno method, it can be usea in all the cases we have discussed in Section I. Moreover, unlike the UHS and BT mothods its

1/ This point is again obscured in Bacha \& Taylor's survey (1).
validity is not dependent on the particular assumptions made about trade liberalization.

Thus, firstly, if it is envisaged that the protective structure will remain unchanged (Case l), it will give the same results as the U.iS method. In the simple model of Section I (Case J.), the LM method involved a mere change in numeraire compared with the UIIS method. Domestic factor and non-traded good 'shadow' prices would be deflated by t, on the Lli method, and traded good prices would be taken at their foreign currency values. On the UHS method, domestic factor and non-traded good 'shadow' prices would be their domestic market prices, and the foreign currency values of traded goods would be multiplied bye(l+t) the UHS shadow exchange rate.

If it is assuned that trade liberalization will take place, then with the exchange rate fized and the prices of non-traded goods flexinte, the luf procedure would take the forcign prices of tradables as given, and work out the implicit prices of the non-traded goods and factors in the free trade situation, in terms of their foreign exchange equivalents. If with trade liberalization, the exchange rate were to be changed, the LM method would again take the forejgn prices of tradables as given, and determine the free trade foreign exchange equival ent prices of the nontradables and domestic factors at the 'now' exchange rate.

The adjustant mechanism with trade liberalization, which is implicit in Liw, however, is of the second sort, namely, with the prices of domestic goods inflexible and a flexible exchazge rate (11, p.53,135). The method is therefore similar in its aims to the BT procodure. vinlike the latter, honever, the LM procedunos provice a way oif estimating not
only the relative price of traded to non-traded goods, but also for approximate calculation of the factor price ratio in the free trade situation. To see this it is necessary to briefly consider the estimation of the 'shadow' wage rate in the LM method.

As we are assuming no other distortions apart from tracie distortions, two aspects of the LM shadow wage are redundant for our purposes, namely, the distortion due to a inigher industrial wage than the social opportunity cost of labor given by the value marginal product of labor in agriculture, and the distortion due to the govemment's inability to directly legislate the optimun savings ratio. The shadow wage in the IM method for our purposes, therefore, is given by the value marginal. product of labor in agriculture (m), whose value in foreign currency is, say, $P_{i, f}$. If agricultural output consists of tradables whose 'border' mices are given and constant, $P_{\text {I. }}$ is determined from the world market in terms of foreion currency. Assuring that thexe is an elastic supply of labor at this 'shadow' wage, the value of w in terms' of foreign currency, in Table l, is fixed for all the 3 cases (Rows I to lill) considered. The removal of the tarifif and the subsequent adjustment process will still change the wage rental ratio from that in the protection situation, but given that the wage rate is constant (in terns of foreign currency) this will be the result entirely of changes in r (the rental rate). Also looking at Row 1.11, rable 1, we heve, in terms of foreign currency, the price of M as $P_{m i n}$, of X as $P_{X f}$ and of L as $P_{\text {Lf }}$ (all given by constant 'border' prices). The forejer exchange equivalent of the rental rate r is $r^{* \%} / e^{*}$ From equation (3), Section 71, we have

$$
a_{\mathrm{L}, \mathrm{~N}} \cdot P_{\mathrm{I}, f}+a_{\mathrm{KN}} \frac{r^{*}}{e^{*}}=p_{\mathrm{n}} / e^{*}, \text { and }
$$

the price of the non-traded good in the free trade situation will be
determined. Gi.von the input/output coefficients (a_{ij}) and with $\mathrm{P}_{\text {LI }}$, $P_{x f}$ and $P_{m f}$ determined by the 'world' market, the only estimate we need to make is of $\frac{r^{\%} \%}{6 \%}$ that is, the rental rate in terms of foreign currency in the free trade situation. Now note that r, in our simple neo-classical. models, is also the rate of retum on investment. Suppose, in guessing $\frac{r^{* *}}{0^{*}}$, we guess a number which is less than the true number, this will mean that more investment will be undertaken in the economy than is feasible in equilibrium. The cxcess of investment will spill over into a balance of payments deficit on the lines of the absorption approach of balence of payments theory. Assuming that consumpion cannot be cut (ex hypothesi the wage rate is fixed and is all consumed), the only way in which the balance of payments deficit (actual or incipient) can be cured is with a rise in r, and a conscquent cut in investment. Iteratively, thecefore, the r which will maintein equilibriun would be detemaned. Whis shows Why in the Lif procodures, once $P_{I f f} P_{X i f}$ and $P_{\mathrm{mif}^{\prime}}$ are detemined by 'border' prices, balance of parments deficits can be only cured by changing absorption, by changing the level of investment via changes in r. (The Lri, ArI) (See11., pp. 89, 138, 139). Thus, on the Ih procedures, given no domestic distortions, the only 'price' the project evaluator would have to 'guess' is the r in tems of foreign currency (the ARI) in the free trade situation. The $P_{L f}$, $P_{x i f}$, $P_{m i}$, and $a_{i j \prime s}$ (assuming fixed coefficients) would be kown directly from the protection situation.

We can contrast the LII procedure with the BT procedure which works in terms of an 'equilibriun' exchange rate. Making the same assumption of an elastic supply of labor at a constant vage in terms of the altemative value marginal product of labor in terms of tradables (wose foreign currency value is. F_{I}, we have (Table 11, Row 111) in the free trade stituation, I/ See following page for this footnote.
the price of X, M and $I T$, as $e^{*} P_{x f}, e^{*} P_{m f}$ and P_{n}, and the factor prices as $W^{\text {ist }}=e^{\text {*F }} P_{\text {Lf }}$, and $r^{\text {*2t }}$. Comparing rows II and III in Table II, it is obvious that given a correct estimate of e^{*}, and the same values for $P_{x f}, P_{m f}, P_{L f}$, the $a_{i j \prime s}$ and $r^{* \prime \prime}$ both the $L M$ and $B T$ procedures, are equivalent. These points are given obscured in the BT survey (1).

L/ (from previous page)
It may seem odd that we are assuring that the LM procedure assumes that the wage rate is constant in terms of a constant value marginal product of labor valued in foreign currency. Whereas the normal assumption is of a fixed money wage. The reason why the latter is eliminated from our discussion is because of our perfectly competitive assumptions, wich necessitate that labor is paid its alternative value marginal product. In the general Lil discussion; it is assuned, both that the money wage paid by the industrial sector (M) is constant, and that the value rarginal product of labor in agriculture in terms of foreicn currency (\because I) is constant. The LM, SWR, then is SVR $=\mathrm{C}-\frac{1}{S}(0-1 N$), where s reflects the premiun on savings relative to consurntion, and C is the value of ' CH ' in tems of forcign eschange, and with $\mathrm{C}>\mathrm{l}$. with an excherge rate change, say a devaluation, wiwh the honey wage, $\$$ constarit, C must fiall, but 14 will remein the some. In the general IM case, thersfore, exchange rate changes, for instence, those accompaning trade liberalization, will. rivolve (or reilect) changes in the SHR (assuming $S>1$, and $C \neq 11$) and vice versa. (That is, if an exchange rete change is anticipated in the fluture, the SIIR will be lower, (see II, p. 130). However, as we are assuming that $C=11$, and as the value of it is assuned constant in terns of foreign currency, for our purposes the Sill cennot change. (For the necessary assumptions abouit poasant faming implicit in assuming if constant, see Lal (10)). Aiso from tho general Sifl fommataion it can be seen that, whilst on the one hand, for a balance of payments deficit to be cured, the SIIR will tend to be loner as C will be lower because of the necesseany exchange rate change, on the other hand, there will. also have to be some reduction in donestic absorption, which (assuming consumption cannot be cut) will meen a reduction of investment and hence a rise in r (the LIf, ARI), this cot. nar. will tend to reise S, and hence raise the SIIR. Given iI, the net change in the SHR will thus depend upon these two opposing effects of a fall in C and a rise in S. These two opposing tendencies axe caused D_{3} the two instruments which are nomally necossary to cure a balance of payments deficit to achieve intemal and cxtemal balence, nenely, a corbination of expenditure switching (the exchange rate change) and expenditure roduction (the cut in investment ard rise in r).
(5) It may be noted that so far we have not considered rankings according to effective protective rates $(2,3)$ as a projectselection procexiure. This is because, in principle, rankings according to effective protective rates (EPR's) cannot tell us anything about the desirability of investment projects. For instance, consider two industries I and II. An investment of $\$ 100$ in both produces value added at world prices (V^{*}) of $\$ 10$ in I ($\mathrm{V}_{\mathrm{I}}^{*}$) and of $\$ 8$ in II $\left(\mathrm{V}_{\mathrm{II}}^{*}\right.$). Value added at domestic prices (V) is $V_{I}=40$ and $V_{I I}=10$. The 位iR ($\left.Z^{\prime} s\right)$, defined as $Z=\frac{V-V^{* *}}{V^{* *}}$ for the two industries are $Z_{I}=\frac{40-10}{10}=3$

$$
Z_{\mathrm{II}}=\frac{10-8}{8}=.25
$$

assuming that the free trade exchange rate is $\$ 1.1=R s .1$. Ranking and choosing projects according to EPR's and taking a zero Z, as our benchnark, industry II, would be prefered to I, though the rate of rebum (\vec{R}) at morld prices, of the two industries is $R_{I}=10 \%$ and $R_{I I}=8 \%$, that is, I is preforeble to II. Of course, if the valve added at world prices $V^{* \prime}$ per unit investment is taken to be the EPR criterion, then it is the TI procedure. Also there are obvious links between EPR's and the SER (see 1), and between GPR's and the B/K ratio (see 3). But as the above example demonstrates, ranking by PPR's cannot be used as an investment criterion.
III.

Alternative Procedures - practice
We now tum to the practical application of the various procedures. Their practicality and usefulness vill depend upon (a.) the realism and relevance of the assumptions on wich they are based and (b) the practical mroblen of ontaining the data for making the adjustments which the different methods envisage.

From Section IT, it is clear, that except for the LM procedure (and to some extent the B / K ratio flexibly interpreted), the other two procedures, the UHS and BT SER's are only valid on two mutually exclusive assumptions about the future course of the economy. They make dianetrically opposed assumptions about future trade liberalization. However, given (i) that trade controls are seldom fixed; (ii) that most developing country governments have at some stage or another actually moved towards trade Iiberalization; and (iii) that trade liberalization would often maximize feasible welfare, so that it is important to know the impact of projects on potential welfare, it would seen to be more desirable to use the Br SER rather than the UHS SER for project evaluation. (Then for the Bruno test, the relevant cut-off rate would be given by the $B T$ 'equilibrium' exchange rate). The cmeial question then is whethor it is better/casier to use the Br or Ler procedures for project evaluation.

Irom our discussion in the last section it*is clear that, in practice, both procedures require a lnowledge of $P_{x f},{ }^{\prime} P_{m f}, P_{I f}$, and the rental rate (x) in terms of domestic or foreign cumency in the free trade situation. The 3 foreign prices, are assumed given from 'border' prices; this moans 'guessing' or approximately estimating the likely rental rate in the free trade situation. Once this has been done, the IM procedure" would immediately give the social returns to the project under consideration, without any further computation. In the case of BP, however, there would have to be the additional step of calculating the 'equilibrium' exchange rate e^{*}. The essential simplicity and superiority of IH procedures, in practice, depends upon its eutting through the need to estimate e^{*}. In princinle, of course, the two methods are equivalent as it can be secn from Tablc II, that the LH paocedure too, implicitily needs an
estimate of e^{*} to get the rental rate in terms of foreign currency. But it is not essontial to calculate e^{*} in the IM procedures, as can be show as follows:

Write, $r^{* *} / e^{*}$, the foreign currency equivalent of the rental rate in free trade as P_{Kf}, and $\mathrm{P}_{\mathrm{n}}^{* / \mathrm{e}^{*} \text { as } \mathrm{p}_{\mathrm{n}}^{*{ }_{*}^{\prime \prime}} \text {. Inen at the protection exchange }}$ rate (e), the values of the domestic relative prices of the 3 goods and two factors in domestic currency with free trade will be given by Row II in Table III. Row III of the same table gives the same relative prices in terms of foreign currency. Whilst Row IV (as in Table II, Row III) gives the prices in domestic currency at the BT 'equilibrium' exchance rate. Table III, is thus exactly equivalent to Table II. But now consider Row IIT. We have $P_{x f}, P_{m f}$ and $P_{\text {LI }}$ given by 'border' prices. Suppose we can guess $P_{k i f}$. Then from the equations in Section II, $\mathrm{P}_{\mathrm{in}}^{* \%}$ is detemined, and the relative prices to be used in project evaluation on the In procedures are detemaned Without any neod to estimate e^{*}. Remembering that we have guessed P_{if}, what are the results of errors in this guess? Fixst, if the K input in in is large (that is, non-traded goods are relatively capital-intensive), then the $p_{n}^{* *}$ we have derived will tend to be wrong. If, however, either N is relatively more labor-intensive and/or, the proportion of non-traded goods to traded goods is small (in the limiting case we have only traded goods as in Case I, Section II) the error in the estinate of p_{n}^{*} as a result of exrors in estimating $P_{k f}$, will not be very important in practice for evaluating and ranking projects. The second offect of a mistake in estimating $p_{k f}$, will be to provide an incorrect cut-off rate for the IRR of projects. This will imply that the volune of investment will be too Iarge (small) relative to the 'equilibrium' level. if $P_{k f}$ is underestimated (overestimated) and this will imply a balance of payments deíicit (surplus).

However, as soon as it appears that a particular cut-off rate ($P_{k f}$) implies an excess (deficiency) of domestic investment, then the cut-off rate will be raised, and thus the correct $P_{k f}$ will be iteratively approximated. Thus, in a relatively open economy, the LM procedures will give a good approsimation to the 'true' relative prices to be used in project evaluation without the need to estimate e^{*}. In fact, as Table III shows, if P_{kf} is know, e^{*} is redundent.

The last statement seens to imply that in that case it is equally irrelevant that we do not have an accurate estimate of e^{*} on the BI^{T} proceduxes. This would be true if the LM procedures of identifoing and estimating $P_{L, f}, P_{k i f}$ and theroby detemining $g_{n}^{\%}$ were al.so followed in BT procedures. In practice, however, this is not likely to be done, and only the prices 0.: X and il wint tem to be 'shadow' priced with e^{*} (see 2). But in that case, especially in a relatively oper economy, a correct estimate of e^{*} becones essential. For consider pow IV, of Teile III, tre will now have $p_{n}, w^{*}, x^{*}, p_{x f}$ and $p_{m f}$ given. To get the correct relative price of the traded goods (X, I) to the domestic good and factors ($\mathrm{N}, \mathrm{I}, \mathrm{K}$), the whole burden folls on the estimate of e^{*}. However, as can be seen from an examination of the BT formula for calculating e^{*}, (see Appendix III), getting a reasonably accurate estimate of this variable is goinc to be extremely difficult in an open econory (one with even a relatively small number of traded goods, say, 100!) in which there are complex trade controls, including quotes and multiple exchange rates (factors not taken into account in the Bl formula). Porther comolications arise in calculating the BT rate as the system of trade controls is changed, and hence the weights (imports and export shares of different commodities) and the effective
protective rates which enter the formula change, thereby altering the estimate of e^{*}. A.l. these complications can be cut through by the use of the IM procedures, which therefore, in practice, are likely to be easier to apnly than a correct application of the BT procedures. (This conclusion is the reverse of that reached by $\operatorname{BT}(1)$!

Another argument for favoring the use of JM rather than $B T$ procedures is one of diplomacy. Even though in principle the two methods are equivalent, govemments are not likely to take kindly to the calculation (and publication!) by the project evaluators, of the 'shadow' exchange rate for their countries (especially if these calculations are done by 'outsiders') as this would be an open acknowledgment that the 'official' exchange rate was vrong! Thus, whillst achieving the same ends for the purposes of project evaluation, the IM procedures are likely to be nore palatable.

Finally, it chould be noted, that all the nethods we heve discussed, if applied properiy, noed estimates of the 'border' prices of tradable cormoditics. Thus the comnon inpression that JM procedures require any extra infomation, beyond that required by other evaluation procedures is completoly mistaken. For relatively open economies, the Ih methods provide the simplest methods for taking proper account of trade distortions, and enabling countries to choose projects in Iine with their comparative advantage.

University Collece Jondon and.
IBRD, Washingion, D.C.
August 1971
(1) Bacha, E. and L. Taylor. Foreign Exchange Shadow Prices: A Critical Review of Current Theories', QJE, Hay 1971.
(2) Balassa, B. 'Project Appraisal in Developing Countries' in Festchrift in Honour of J. Tinbergen (forthcoming).
(3) Balassa., B. and D. M. Schydlowsky. IEffective Tariffs, Domestic cost of Foreign ixchange, and the Equilibrium Exchange Rate.', JPE, May/June 1968.
(4) Bruno, M. 'The Optimal Selection of Export Promoting and Import Substituting Projects' in Planning the External Sector: Techniques, Problems and Policies (U.1. 1907).
(5) Corden, W. 1. The Theory of Protection (0.U.P. 1971).
(6) Harberger, A. C. 'Survey of Litorature on Cost-Benefit Analysis for Industrial Project Evalua'tion' in Evaluation of Tndustrial Projects (UNIDD, llew York, 190́8).
(7) Jones, R. W. 'The Structure of Simple Ceneral Equilibrium Models'; JPE, December 1965.
(8) Joshi, V. 'roreign Trade and Investment miteria' in Ellis and Soott ed. Essays in Honor of Sir Ray Herrod (00, 1970).
(9) Kruger, A. 0. 'Some Economic Costs of Archenge Control: The 'Turkish Case', JPD, Octover 1966.
(10) Lai., D. 'Disutility of Effort, Migration, and the Shadow Wage Rate', (mimeo) 1971.
(II) Little, I. II. D. and J. A. Ifirriees. Nanual of Industrial Project Analysis, Vol. II (OECD, Paris, 1909 .
(12) Schydlowsky, D. II. 'On the Choice of a Shadow Price for Foreign Exchange', Econonic Develoment Report, Ho. 108, Develoment Advisory Service, Harvard, 1958.
(13) UNIDO Cuidelines for Project Eraluation (mimeo), May 1970 ,

Kig. 1

BD is the foreign price ratio.
P and C^{\prime} are the production and consumption points with free trade P_{1} and C_{1} are the production and consumption points with a tarific (given by cifferences in the slopes of $E F$ and $A C$).

EF is the domestic price ratio with the tariff.
$I_{1} I_{1}$ is the indifference curve giving the welfare level at the free trade consumption point.
$I_{0} I_{0}$ is the indifferenco curve giving the welfare level at the taniff-distorted consumption point.
$O B / O D$ is the value of donestic expenditure at foreign ('boider') prices, in the free trade situation, with $X / 11$ as the numeraire.
$O A /$ ic is the value of domestic expenditure at f'creign ('border') prices, in the tacief cituation, with x an the munciaise.

Table I
Goods and Factor Prices

Goods
Factors

I.Protection	X	M	N	L	K
Prices	$e P_{x f}$	$e P_{m f}(I+t)$	P_{n}	w	r

II. Free Trade, Fixed Exchange Rate and P_{n} rlexibles

Prices $\quad e_{x f} \quad e_{m f}$
P_{n}^{*}
$w^{*} \quad r^{*}$
III. Free Trade P_{n} Fixed
and variable Exchance
Rate . $e^{*} p_{X f} e^{*} P_{m f} \quad P_{n} \quad w^{* *} \quad r^{* *}$

$$
\begin{aligned}
\text { Wote: } & e \quad-\quad \text { is the enchange rate } \\
& P_{z f}-\text { the foreign currency price of } X \\
& P_{m f}-\text { the foreign currency price of } \mathrm{i}
\end{aligned}
$$

Table II

Comoarison of Goorls and Factor Prices on the LM and BT Procedures

	Goods			Factors	
	X	M	\underline{N}	L	K
I. Protection Situation (domestic currency)	$\mathrm{eP}_{\mathrm{XX}}$	$e P_{\text {inf }}(1+t)$.	P_{n}		r
II. Free Trade, LM (foreign currency)	P_{xf}	$\mathrm{P}_{\mathrm{mf}}{ }^{\text {f }}$	$\frac{P_{n}}{e^{*}}$	$\mathrm{P}_{\text {L. } \mathrm{f}}$	$\frac{r^{* *}}{\text { *** }}$
III. Free Trade, BT (domestic currency)	$e^{*} p_{x f}$	$\mathrm{e}^{*} \mathrm{P}_{\mathrm{mf}}$	P_{n}		$r^{* *}$

Table III
I. Protaction Sivation

${ }^{e ?}{ }_{x f}$
.14

II. Free Trade Exchanzo $\frac{3 \text { ite plexible }}{\text { (donestic currency }}$ at protection exchange rate e)

$$
e P_{x f} \quad e P_{m f} \quad e P_{n}^{*}\left[=e P_{n}^{*}\left[\begin{array}{c}
\frac{n}{e^{*}}
\end{array}\right] \quad e P_{L f} \quad e P_{k f}\left[=\frac{r^{*}}{e^{*}}\right]\right.
$$

ITT. $\frac{\text { Prec Trade, Ruchange Rate }}{\text { Mlexible }} P_{x f}$ (roneinn currency values) [Id

 $P_{m f}$$P_{n}^{* *}$
P_{LI}
$P_{k f}$
IV. Free Trade, Fxchanse Rate ϵ^{*} p
$e^{*} p_{n f} \quad P_{n}$

Flexible
(domestic currency at B^{\prime} equilibrium exchange rate 0%)

Where $\hat{x}=\frac{d x}{x}$, and $\epsilon_{x y}$, is the elasticity of demand for x with resepct to price P_{y}, and $\eta_{x y}$ is the elasticity of supply of x with respect to price P_{y}.

To restore equilibrium in the market for $N, \quad \hat{N}_{d}=\hat{N}_{S}$, and hence from (6) and (7) we get

$$
\begin{equation*}
\hat{\mathrm{P}}_{\mathrm{n}}=\left[\frac{\eta_{\mathrm{nm}}-\epsilon_{\mathrm{nm}}}{\epsilon_{\mathrm{nn}}-\eta_{\mathrm{nn}}}\right] \hat{\mathrm{P}}_{\mathrm{m}} \tag{8}
\end{equation*}
$$

From this it follows that for $\hat{\mathrm{P}}_{\mathrm{n}}=\hat{\mathrm{P}}_{\mathrm{m}}$,

$$
\begin{equation*}
\eta_{n n}+i_{n n}=\epsilon_{n n}+\epsilon_{n m} \tag{9}
\end{equation*}
$$

that is the sum of the own and cross elasticity of demand (with respect to if) for N must equal the sum of the own and cross elasticity of supply (with respect to H) for N .

If we assume that the cross elasticities are zero, we get $\hat{\mathrm{P}}_{n}=\hat{\mathrm{P}}_{\mathrm{m}}$, iff the elasticities of demand and supply of In are oqual.
(3) The chenge in factor pinces, with price of INewible, and the exchange rate fixed), with the renoval of the tariff, of $t, \%$ on 1.1 , can be derived from the production relationships (1) to (3) as follows.

Defining $\theta_{i j}$ as $\frac{a_{i j} P_{i}}{P_{j}}, \quad$ where $\begin{aligned} i & =L, k \\ P_{i} & =W, r \\ j & =X, M, N\end{aligned}$
that is input i's distributive share in industry (j)
and as before $\hat{x}=\frac{d x}{x}$,
then, totally difilerontiating (1) through (3), and rememoering that from the cost-minimization sequirement,

$$
\theta_{L j} \hat{a}_{I j j}+\theta_{K j} \hat{a}_{K j}=0
$$

where $(j=X, M, N)$
yields,

I/ The mothod of matysis ma notation, is basch on R.W. Jonos: "he Suracture The emohod ot ampysis and notation, is basce on R.W.

APPENDIY I

Case 2: Two Traded, One ion-Traded Good Produced and Consumed

The production relations are given by

$\mathrm{a}_{\mathrm{LM}} \mathrm{Mf}^{+}+\mathrm{a}_{\mathrm{K} \mathrm{N}^{r}}$	$=P_{m}$	-
$\mathrm{a}_{L X^{*}}+\mathrm{a}_{K X}{ }^{r}$	$=P_{x}$	-
$\mathrm{a}_{\mathrm{LH}} \mathrm{W}^{+}+\mathrm{anHr}^{\text {r }}$	$=P_{n}$	-

Where $a_{i j}$ is the coefficient of the $i^{\text {th }}$ factor ($i=K, L$) used in the $j^{\text {th }}$ industry ($\mathrm{j}=\mathrm{M}, \mathrm{X}, \mathrm{N}$)
w is the wage rate,
r is the rental rate, D_{m}, the price of the importable M, P_{x}, the price of the exportable x, and P_{n}, the price of the non-traded good N, all in the protection situation.
(1) With the removal of the tarifi i, the donestic price of M chenges from to $\mathrm{eP}_{\mathrm{mi}}$, $P_{m o f} e(1+t)$ / where $P_{m f}$ is the price in forej.zn currency, ad e is the exchange rate. Assuning that equilibriun is restored with the exchange rate fixed and with the price of N ilexible.
(A) The change in the price of $\left.N\left(\mathrm{DP}_{n} / \mathrm{P}_{n}\right)=\hat{\mathrm{P}}_{\mathrm{n}}\right)$ can then be derived as follows:

Let the demand (M_{d}) and supply (i_{S}) functions for N be given by:

$$
\begin{aligned}
& N_{d}=N_{d}\left(P_{n}, P_{X}, P_{m}, Y\right) \\
& N_{S}=N_{S}\left(P_{n}, P_{X}, P_{m}, Y\right)
\end{aligned}
$$

Where Y , is domestic money income.
Then differentiating (4) and (5) totally, dividing through by N_{d} in (4) and N_{S} in (5), and notins that $d_{p x}$ and $d Y$ are boti zero, as ex hypothesi p_{x} and Y do not change we have:

$$
\begin{align*}
& \hat{\mathrm{n}}_{\mathrm{d}}=\epsilon_{\mathrm{nn}} \hat{p}_{\mathrm{n}}+\epsilon_{\mathrm{nm}} \hat{\mathrm{p}}_{\mathrm{m}}- \tag{6}\\
& \hat{\mathrm{n}}_{\mathrm{s}}=\eta_{\mathrm{n}} \hat{\mathrm{p}}_{\mathrm{n}}+\eta_{\mathrm{nm}} \hat{\mathrm{p}}_{\mathrm{m}}
\end{align*}
$$

Subtracting (12) from (10) and noting that, ex hypothesi, $\hat{\mathrm{P}}_{\mathrm{x}}$ is zero we have

$$
\begin{aligned}
& {\left[\theta_{L M}-\theta_{L N}\right] \hat{W}+\left[\theta_{K M}-\theta_{K i N}\right] \hat{r}=\left[\hat{P}_{m}-\hat{P}_{n}\right]} \\
& \theta_{L X} \hat{W}+\theta_{K X} \hat{r}=0
\end{aligned}
$$

This yields the following solutions for w and r.

$$
\begin{align*}
& \hat{\mathbf{w}}=\frac{\left[P_{m}-P_{n}\right]}{\left|\theta^{\prime}\right|} \theta_{K X} \tag{4}\\
& \hat{\mathrm{r}}=\frac{\stackrel{\mathrm{P}}{m}-\hat{P}_{n}}{\left|\theta^{\prime}\right|} \theta_{L X} \tag{15}
\end{align*}
$$

Where $\left|\theta^{\prime}\right|$ is the determinant of the coefficients of \hat{w} and \hat{r} in equations (13) and (11')
that is, $\left|\theta^{\prime}\right|=\partial_{K X}\left[\theta_{L N}-\theta_{L N}\right]-\theta_{L X}\left[\theta_{K I}-\theta_{K N}\right]$

$$
=\left(\partial_{L M}-\theta_{L N}\right) \quad\left[\begin{array}{l}
\text { as } \theta_{L J}+\theta_{\mathrm{Kj}}=1 \\
\text { where } j=X, K, M . \tag{15}
\end{array}\right]
$$

From (14) and (15), the change in relative factor prices ($\hat{w}-\hat{y}$) is

$$
\begin{align*}
(\hat{\mathrm{N}}-\hat{\mathrm{r}}) & =\frac{\left(\hat{\mathrm{P}}_{n}-\hat{\mathrm{P}}_{n}\right)\left(\theta_{K X}+\theta_{I X}\right)}{\left|\theta^{\prime}\right|} \\
& =\frac{\left(\hat{P}_{m}-\hat{\mathrm{P}}_{n}\right)}{\left[\theta_{L I}-\theta_{\mathrm{LN}}\right]} \tag{17}
\end{align*}
$$

as $\theta_{\mathrm{KX}}+\theta_{\mathrm{LX}}=1$, and substituting the value of $\left|\theta^{\prime}\right|$ from (1. 0).
From (17) it aan be seen that when $\hat{\mathrm{P}}_{\mathrm{m}}=\hat{\mathrm{P}}_{\mathrm{n}}$ (that is when (9) holds), $(\hat{\mathrm{w}}-\hat{r})=0$, and the wage-rental ratio will be the same in the protection and in the free trade situation. The problen of estimating the relative prices in the free trade situation (given the ijixed exchange rate e) would be greatly simplified, as the prices of the traded goods would we given by their world prices, and that of the non-traded good by the change in the price of N, that is by the tarifif rate.
(2) Alternativel.y, the adjustment mechanism could be with the exchange rate variable and the price of in fixed.
(A) The Change in the exchange rate can then be derived as follows:

Assuming that (i) the cross-elasticities in both production and consumption of X and in are zero, (jii) the income effects of the tariff and exchange rate changes can be ignored, and j.f the elasticity of supply of exports (X) in the protection situation is η_{XX} elasticity of demand for imports (M) in the protection situation is $\epsilon_{\text {mrn }}$
The protection exchange rate is e
The free-trade exchange rate is e^{*}
So that $\hat{e}=\frac{d e}{e}$

$$
=\frac{e^{*}}{e}-1
$$

The value of inpote in the protection sibuation is it
The velue of exports in the protection situation is X
Rise in imports (at the protection exchange rate e) with tariff renoval and deraluation is dy

Rise in exports (at the protection exchange rate e) with a devaluation is dx We have

$$
\begin{align*}
\eta_{x x} & =\frac{d x}{x} \cdot \frac{e}{(e-e} ;=\frac{d x}{x} \cdot \frac{1}{e} \tag{18}\\
\epsilon_{m n} & =\frac{d M}{M} \cdot \frac{(1+t)}{(t-\hat{e})} \tag{19}\\
\text { as } \quad \frac{d P x}{P x} & =\frac{e^{*}-e}{e}=q \\
\text { and } \quad \frac{d P M}{P M} & =\frac{e(1+t)-e^{*}}{e(1+t)}=\frac{(t-q)}{(1+t)}
\end{align*}
$$

To maintain the balance of payments unchnnged $d x=d y$ and hence from (7.8) and (19)

$$
\begin{equation*}
\hat{e}=\frac{t}{1+\frac{x}{\pi i} \frac{n}{\varepsilon_{\text {inii }}}(1+t)} \tag{20}
\end{equation*}
$$

[^0]If we assume that initially the balance of payments was in equilibrium with $\mathrm{X}=\mathrm{M}$,

If we had evaluated the exchange rate adjustment at the free trade elasticities, then the exchange rate adjustment would have been given by:

$$
\begin{equation*}
\hat{e}=\frac{t}{1+\frac{\eta_{x^{\prime} x}}{\epsilon_{\min 1^{\prime}}}} \quad \quad \text { (assuring } x=11 \text {) } \tag{21'}
\end{equation*}
$$

If

$$
\eta_{\mathrm{xx}}{ }^{\prime}=E_{\mathrm{mm}} \text { 1 }
$$

then

$$
\hat{e}=t / 2
$$

(B) The change in relative factor prices, can be derived as follows: Making use oi (10), (12), (.2), and remembering that now with R_{n} fixed $\hat{\mathrm{P}}_{n}=0$, we get

$$
\begin{equation*}
\left(\theta_{\mathrm{L} / 1}-\theta_{\mathrm{LX}}\right) \hat{\mathrm{w}}+\left(\theta_{\mathrm{KA}}+\theta_{\mathrm{KX}}\right) \hat{x}=\left(\hat{P}_{\mathrm{m}}-\hat{\mathrm{P}}_{\mathrm{x}}\right) \tag{22}
\end{equation*}
$$

and

$$
\begin{equation*}
\theta_{\mathrm{LN}} \quad \hat{\mathrm{w}}+\theta_{\mathrm{KN}} \quad \hat{\mathrm{r}}=0 . \tag{121}
\end{equation*}
$$

This yields the following values of \hat{v} and \hat{r}

$$
\begin{equation*}
\hat{\mathrm{w}}=\frac{\hat{\theta}_{\mathrm{MI}}\left(\hat{\mathrm{P}}_{\mathrm{Y}}-\hat{\mathrm{P}}_{\mathrm{x}}\right)}{\left|\theta_{n} \cdot\right|} \tag{23}
\end{equation*}
$$

and and $\hat{r}=-\frac{\theta_{L M}\left(\hat{P}_{n}-\hat{P}_{x}\right)}{\left|\theta^{11}\right|}$
where $|\hat{H}|=\theta_{\mathrm{KH}}\left(\theta_{\mathrm{IMI}}-\theta_{\mathrm{LX}}\right)-\theta_{\mathrm{LIN}}\left(\theta_{\mathrm{KII}}-\theta_{\mathrm{KX}}\right)$

$$
\begin{equation*}
=\left(\theta_{\mathrm{LM}}-\theta_{\mathrm{LJ}}\right) \tag{25}
\end{equation*}
$$

The change in relative factor prices $(\hat{w}-\hat{r})$ is from (23) ard (25) given by

$$
\hat{w}-\hat{x}=\frac{\left(\hat{P}_{\mathrm{n}}-\hat{P}_{X}\right)\left(\theta_{\mathrm{M}}+\theta_{\mathrm{IH}}\right)}{\left|\theta^{\prime}\right|}
$$

and as

$$
\begin{align*}
& \theta_{\mathrm{KN}}+\theta_{\mathrm{MN}}=1 \text {, and using } \tag{25}\\
& \hat{\mathrm{W}}-\hat{\mathrm{r}}=\left(\hat{\mathrm{P}}_{\mathrm{Mi}}-\hat{\mathrm{P}}_{\mathrm{N}}\right) /\left(\theta_{\mathrm{JIT}}-\theta_{\mathrm{LX}}\right)
\end{align*}
$$

3T क mien. on. cit. 112 .
(3) We can now compare the changes in relative commodity and factor prices given the two altemative adjustmont mechanisms:
(A) With the exchange rate fixed and P_{n} variable we have

$$
\begin{align*}
\hat{\mathrm{P}}_{\mathrm{n}} & =\left[\frac{\eta_{m n}-\epsilon_{n n}}{\epsilon_{n n}-\eta_{n n}}\right] \hat{\mathrm{P}}_{\mathrm{m}} \tag{8}\\
\text { and } \quad(\hat{w}-\hat{r}) & =\frac{\left[\hat{P}_{m}-\hat{P}_{n}\right]}{\left[\theta_{L M}-\theta_{L N}\right]} \tag{17}
\end{align*}
$$

Note that

$$
\hat{p}_{m}=-t
$$

(B) With P_{n} fixed and the exchange rate variable we have
and

$$
\begin{equation*}
\hat{\mathrm{e}}=\frac{t}{n_{\mathrm{xx}}(1+t)+1} \tag{20}
\end{equation*}
$$

$\hat{w}^{\prime}-\hat{r}^{\prime}=\frac{\left(\hat{P}_{n}^{\prime}-\hat{P}_{x}^{\prime}\right.}{\left(\hat{\theta}_{D_{n}}-\theta_{L X}\right)}$
$\left[\right.$ where $\left.\left.\quad \hat{\mathrm{P}}_{\mathrm{m}^{\prime}}-\hat{\mathrm{P}}_{X^{\prime}}\right)=\frac{(t \cdots \hat{\mathrm{e}})}{(1+\mathrm{t})}-\hat{e}\right]$
For $\hat{\mathrm{P}}_{\mathrm{n}}$ in (A) to equal $\hat{\mathrm{e}}$ in (B) clearly from (8) and (20) neglecting the cross elasticities in (8)

$$
\begin{equation*}
\frac{1}{\eta \mathrm{nn}-\operatorname{E}_{\mathrm{nn}}}=\frac{1}{\frac{\eta_{\mathrm{xx}}}{\epsilon_{\mathrm{mm}}}(1+t)+1-} \tag{27}
\end{equation*}
$$

If we assume that the demand and supply schedules for imports (M) and exports (X) are of constant elasticity, and we evaluate, e, using the values of imports and exports at the free-trade exchange rate e, then,

$$
\begin{equation*}
\hat{e}=\frac{t}{1+\frac{\eta_{x x}}{\epsilon_{\mathrm{rm}}}} \quad \text { (See Coxden } \mathrm{p} \cdot \text { 111-112) } \tag{1}
\end{equation*}
$$

and hence for $\hat{\mathrm{e}}: \hat{\mathrm{p}}_{n}$, we have

$$
\begin{equation*}
1+\sum_{i x n}=i_{1 n n}-E_{n n} \tag{2.7'}
\end{equation*}
$$

This condition will not in general hold, and hence in general $\hat{\mathrm{P}}_{\mathrm{n}} \neq \hat{\mathrm{e}}$. (D) For $(\hat{w}-\hat{r})$ in the two adjustment situations to be the same, from (17) and (26) we have

$$
\begin{equation*}
\frac{\left(\hat{P}_{\mathrm{m}}-\hat{P}_{\mathrm{n}}\right)}{\left(\theta_{\mathrm{LI}-} \theta_{\mathrm{LiI}}\right)}=\frac{\left(\hat{P}_{\mathrm{m}}^{1}-\hat{\mathrm{P}}_{\mathrm{x}}^{\prime}\right)}{\left(\hat{\theta}_{\mathrm{Mi}} \theta_{\mathrm{LX}}\right)} \tag{28}
\end{equation*}
$$

From (8), neglecting cross elasticities and making use of the relationship for $\left(\hat{P}_{m}^{\prime}-\hat{P}_{x}^{\prime}\right)$ and (20) for \hat{e}, we get,

$$
\begin{equation*}
\frac{\left(1+\epsilon_{n n}-\eta_{n n}\right)}{\left(\epsilon_{\mathrm{nn}}-\eta_{\mathrm{nn}}\right)\left(\theta_{\mathrm{LM}}-\theta_{\mathrm{LN}}\right)}=\frac{\left(\eta_{\mathrm{xx}}-\epsilon_{\mathrm{mm}}(1+t)\right)}{\left(\varepsilon_{\mathrm{mn}}+\eta_{\mathrm{xx}}\right)(1+t)\left(\theta_{\mathrm{LM}}-\theta_{\mathrm{LX}}\right)} \tag{29}
\end{equation*}
$$

This condition will not hold in general and hence ($\hat{v}-\hat{n}$) will not be the same for the two adjustment -mechanisms.

APPENDTX II

Case 3: Two Traded Goods Produced and Consumed, and One Non-Traded Intermediate Good Produced

The symbols are the same as in Appendix I.
The production relations are given by:

$$
\begin{align*}
& a_{L M}{ }^{W}+a_{K M} r+a_{M M} P_{n}=P_{m} \tag{1}\\
& a_{L X} W^{W}+a_{K X} r+a_{N X} P_{n}=P_{X} \tag{2}\\
& a_{L N} w+a_{K N} r \tag{3}
\end{align*}
$$

As before, differentiating totally yields

$$
\begin{align*}
\theta_{L M}{ }^{\hat{N}}+\theta_{K i r} \hat{r}+\theta_{M I} \hat{P}_{n} & =\hat{P}_{m} \tag{4}\\
\theta_{L X} \hat{W}+\theta_{K X} \hat{r}+\theta_{N X} \hat{P}_{n} & =\hat{P}_{X} \tag{5}\\
\theta_{L I N} \hat{N}+\theta_{K I} \hat{r} & =\hat{P}_{n} \tag{6}
\end{align*}
$$

Substituting (6) into (4) and (5), we get

$$
\begin{align*}
& \left(\theta_{L M}+\theta_{M M} \theta_{L I}\right) \hat{W}+\left(\theta_{M X}+\theta_{M I} \theta_{K N}\right) \hat{r}=\hat{p}_{m}- \tag{7}\\
& \left(\theta_{L X}+\theta_{I X I} \theta_{L N}\right) \hat{w}+\left(\theta_{K X}+\theta_{N X X} \theta_{K I}\right) \hat{r}=\hat{p}_{X}- \tag{8}
\end{align*}
$$

Subtracting (8) from (7), and after simplification we get

$$
\begin{equation*}
(\hat{w} \cdot \hat{r})=\frac{\left(\hat{p}_{m}-\hat{p}_{x}\right)}{\left(\theta_{K X}-\theta_{K A}\right)+\theta_{\mathrm{KN}}\left(\theta_{\mathrm{NX}}-\theta_{\mathrm{NHI}}\right)}- \tag{9}
\end{equation*}
$$

Irrespective of the adjustment mechanism for bringing about the equilibrium price of traded to non-traded goods, the relative factor prices in the free trade situation, with the removal of the tariff will be given by (9). Suppose the adjustment is with the exchange rato fixed and the price of it flexible
Then $\hat{\mathrm{P}}_{\mathrm{m}}=t$, and $\hat{\mathrm{P}}_{\mathrm{x}}=0$, and

$$
\begin{equation*}
(\hat{w}-\hat{r}):=\frac{t}{\left(\theta_{\mathrm{KX}}-\theta_{\mathrm{KI}}\right)+\theta_{\mathrm{KN}}\left(\theta_{\mathrm{NX}}-\theta_{\mathrm{MH}}\right)} \tag{9'}
\end{equation*}
$$

What will be the change in price of $N, \hat{\mathrm{P}}_{\mathrm{n}}$ in the movement to the free trade position?
Solving for \hat{w} and \hat{r} from (7) and (8) we get

$$
\begin{align*}
& \hat{\mathrm{w}}=\frac{\hat{\mathrm{P}}_{\mathrm{m}}\left(\theta_{\mathrm{KX}}+\theta_{\mathrm{HX}} \theta_{\mathrm{KI}}\right)-\hat{\mathrm{P}}_{\mathrm{X}}\left(\theta_{\mathrm{KM}}+\theta_{\mathrm{MI}} \theta_{\mathrm{KI}}\right)}{\left(\theta_{\mathrm{KX}}+\theta_{\mathrm{NX}} \theta_{\mathrm{KI}}\right)-\left(\theta_{\mathrm{KI}}+\theta_{\mathrm{MY} \mathrm{~K}_{\mathrm{KI}}}\right)} \tag{10}\\
& \text { and } \hat{r}=\frac{\hat{P}_{m}\left(\theta_{L X}+\theta_{N X} \theta_{L M}\right)-\hat{P}_{K}\left(\theta_{L M}+\theta_{M M} \theta_{L M}\right)}{\left(\theta_{L X}+\theta_{N X} \theta_{L N}\right)-\left(\theta_{L M}+\theta_{N H} \theta_{L N}\right)} \tag{21.}
\end{align*}
$$

Substituting (10) and (11) in (6) and after simplification yields,

We know $\hat{\mathrm{P}}_{\mathrm{x}}=0$, and $\hat{\mathrm{P}}_{\mathrm{m}}=t$, then from (12) we have

$$
\begin{equation*}
\hat{p}_{n}=\frac{t\left[\frac{\theta_{K N}}{\vartheta_{L I}} e_{\mathrm{L}, \mathrm{X}}-\theta_{K X}\right]}{\frac{\theta_{\mathrm{KN}}}{\theta_{\mathrm{LI}}}\left[\theta_{L X}-\theta_{\mathrm{L},}\right]-\left[\theta_{K X}-\theta_{K M}\right]} \tag{12'}
\end{equation*}
$$

The change in the non-traded good price will be the same as that of the importable, if,

$$
\begin{align*}
& \hat{\mathrm{P}}_{\mathrm{n}}=t \text {, that is when, } \\
& \frac{\theta_{K N}}{\theta_{L N}} \theta_{L X}-\theta_{K X}=\frac{\theta_{K N}}{\theta_{L M}}\left[\theta_{L X}-\theta_{L M}\right]-\theta_{K X}+\theta_{K M} \\
& \text { or } \quad \frac{\theta_{\mathrm{KN}}}{\theta_{\mathrm{LN}}}=\frac{\theta_{\mathrm{MM}}}{\theta_{\mathrm{LM}}} \\
& \text { or } \quad \frac{a_{K H}}{a_{\mathrm{M} H 1}}=\frac{a_{K M}}{a_{\mathrm{L} H}} \tag{13}
\end{align*}
$$

That is if the M and N industries have the same factor intensities. Next consider the adjustment mechanism with the price of N fixed and With the exchange rate variable.

Then
in (4) to (6) $\hat{P}_{n}=0$
and $\quad(\hat{w}-\hat{x})=\frac{\left(\hat{P}_{m}-\hat{P}_{x}\right)}{|\theta|}$

Also from (6)

$$
\begin{aligned}
& \hat{\mathrm{w}}=-\frac{\theta_{\mathrm{KN}}}{\theta_{\mathrm{LN}}} \hat{\mathrm{r}} \\
& \hat{\mathrm{r}}=-\frac{\theta_{\mathrm{J} N}}{\theta_{\mathrm{KN}}} \hat{\mathrm{w}}
\end{aligned}
$$

Substituting either the value of $\hat{\mathrm{v}}$ or \hat{r} in (4) and (5), yields

$$
\begin{equation*}
\frac{\hat{p}_{m}}{\hat{P}_{X}}=\frac{\left.\theta_{\mathrm{KI}} \theta_{\mathrm{LN}}-\theta_{\mathrm{MI}} \theta_{\mathrm{LI}}\right]}{\left[\theta_{\mathrm{KX}} \theta_{\mathrm{LN}}-\theta_{\mathrm{KI}} \theta_{\mathrm{LX}}\right]} \quad- \tag{16}
\end{equation*}
$$

Given that the needed devaluation rate is \hat{e}, and that the tariff was t, we have

$$
\frac{\hat{P}_{\mathrm{r}}}{\frac{\mathrm{P}_{x}}{x}}=\frac{(t-\hat{e})}{\hat{e}(1+t)}
$$

Substituting this in (16) and simplifying yields

$$
\begin{equation*}
\hat{e}=\frac{t\left(\theta_{K X} \theta_{\mathrm{IN}}-\theta_{K N} \theta_{\mathrm{I} X}\right)}{(1+t)\left(\theta_{K M} \theta_{L M}-\theta_{K H} \theta_{L M}\right)+\left(\theta_{K X} \theta_{L M} \theta_{K N} \theta_{L X}\right)} \tag{17}
\end{equation*}
$$

As is to be expected in this model, as the domestic price of N, has been fixed, this immediately determines the requisite devaluation, that is the correct relative price of traded to non-traded goods, from the domestic
production relationships (the $\theta^{\prime} s$) and the change in the relative commodity price of the two traded commodities. As the relative commodity prices which are fixed from world trade, determine the relative domestic factor prices, and as soon as the domestic money price of the only domestic good is fixed, all money prices, including the exchange rate in the free trade situation are determined.

APPENDIX III

The Equivalence of the BT Equilibriun'Exchange Pate and the Devaluation Pate of Appendix I

The BT 'equilibrium' exchange rate is (see l, p. 2l6) for three tradable goods (two importables $M_{1} M_{2}$ and one exportable X) is

$$
\begin{equation*}
r^{*}=\frac{r\left[\emptyset v_{1} \epsilon_{x_{1}}-T_{1} u_{1} \eta m_{1}-T_{2} u_{2} \eta m_{2}\right]}{v_{1} \epsilon_{x_{1}}-\left(u_{1} \eta m_{1}+v_{2} \eta m_{2}\right)} \tag{1}
\end{equation*}
$$

where using the notation in Appendix I.
$r=e$, the protection exchange rate
$\varnothing=(1+s)$, the export subsidy to x
$T_{1}=\left(1+t_{1}\right)$, the tariff on importable M_{1}
$T_{2}=\left(1+t_{2}\right)$, the tariff on importable M_{2}
$V_{i}=\frac{x}{x}=1$, the share of x in total exports
$u_{1}=\frac{\eta_{1}}{H_{1}+I_{2}}$, the share of M_{1} in total imports
$u_{2}=\frac{M_{2}}{I_{1}+H_{2}}$, the share of M_{2} in total imports
$\epsilon_{x_{1}}=\eta_{2 x}$, the elasticity of supply of exports (x)
$\eta_{1}=-\epsilon_{I_{1} m_{1}}$, the elasticity of demand for imports of M_{1}

Hence (1) using our notation become

$$
\dot{r}^{\ddot{m}}=\frac{e\left[(1+s) \eta_{x x}+\left(1+t_{1}\right) \dot{\epsilon}_{m_{2} m_{1}} \frac{M_{1}}{M_{1}+M_{2}}+\left(1+t_{2}\right)<_{r_{2} m_{2}} \frac{\eta_{2}}{M_{1}+\ddot{H}_{2}}\right]}{\eta_{x x}+\epsilon_{m_{1} m_{1}} \frac{M_{1}}{M_{1}+H_{2}}+\epsilon_{m_{1} m_{1}} \frac{H_{2}}{M_{1}+m_{2}}}
$$

The change in the exchange rate (er), evaluated at the free trade elasticities (BT assume constant elasticities) from equation (21!) Appendix I, incorporation;
two importables, with tariff rates t_{1} and t_{2}, and an export subsidy of s_{1}, and assuming $x=M_{1}+M_{2}$, would be given by

$$
\begin{equation*}
\hat{e}=\frac{s \eta_{1} x+t_{1} \epsilon_{m_{1} m_{1}} \frac{M_{1}}{M_{1}+M_{2}}+t_{2} \epsilon_{m_{2} m_{2}} \frac{M_{2}}{M_{1}+M_{2}}}{\eta_{x x}+\epsilon_{m_{1} m_{2}} \cdot\left[\frac{M_{1}}{M_{1}+M_{2}}\right]+\epsilon_{m_{2} m_{2}}\left[\frac{M_{2}}{M_{1}+M_{2}}\right]} \tag{2}
\end{equation*}
$$

Noting that $\hat{e}=\frac{e^{*}}{e^{*}}-1$

$$
\begin{aligned}
& \text { or } e^{*}=e(1+\hat{e}) \text {, we get from (2) } \\
& \qquad e^{*}=\frac{e\left[(1+s) \eta_{x x}+\left(1+t_{1}\right) \epsilon_{m_{1} m_{1}\left[\frac{M_{1}}{M_{1}+M_{2}}\right]+\left(1+t_{2}\right) \epsilon_{m_{2} m_{2}}\left[\frac{M_{2}}{M_{1}+M_{2}}\right]}^{\eta x x+\epsilon_{m_{1} m_{1}}\left[\frac{M_{1}}{M_{1}+H_{2}}\right]+\epsilon_{m_{2} m_{2}}\left[\frac{M_{2}}{M_{1}+H_{2}}\right]-\text { (2') }}\right.}{} . l
\end{aligned}
$$

(21) and (I') are equal, and hence $e^{*}=r^{*}$.

1/ See Cordon's equation (5.1) p. 113, op. cit.

[^0]: 1. Corden, op. cit. p. 11.2.
