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When can we use matching?

What if the assignment to the treatment is not 

done randomly or based on an eligibility index,       

but on the basis of observable variables?

This is when matching methods come in! Matching 

methods allow you to construct comparison groups 

when the assignment to the treatment (or the take-up 

of treatment) can be modeled on the basis of 

observable variables.



When can we use matching?

Intuition:  the comparison group needs to be as 

similar as possible to the treatment group, in 

terms of the observables before the start of the 

treatment. Avoids possible “confounders” from 

imbalance in observables.

The method assumes there are no „remaining‟ 

unobservable differences between treatment 

and comparison groups.



Key Question

What is the effect of treatment 

when the assignment to the 

treatment is based on observable 

variables?



Unconfoundedness & 

Selection on observables

Y1, Y0  D  |  X

Let X denote a matrix in which each row is a
vector of pre-treatment observable variables for
individual i.

Unconfoundedness: Assignment to treatment is
unconfounded given pre-treatment variables X if

Unconfoundedness is equivalent to saying that:
(1) within each cell defined by X:  treatment is random
(2) the selection into treatment depends only on the 
observables X.



Average effects of treatment 
Assuming unconfoundedness given X

Intuition
o Estimate the treatment effect within each cell 

defined by X

o Take the weighted average over the different 

cells

Maths
In your handouts: Annex 1



Strategy for estimating average 

effect of treatment 
Selection on observables

Unconfoundedness suggests the following strategy
for the estimation of the average treatment effect δ

o Stratify the data into cells defined by each particular 
value of X

o Within each cell (i.e. conditioning on X) compute the 
difference between the average outcomes of the 
treated and the controls

o Average these differences with respect to the 
distribution of X in the population of treated units.

Is this strategy feasible?



Is our strategy feasible? 
The Dimensionality Problem

This may not be feasible when

o The sample is small

o The set of covariates is large

o Many of the covariates have many values or are 

continuous

This is what we call…

The dimensionality problem



The Dimensionality Problem
Examples

o How many cells do we have with 2 binary X

variables? And with 3 binary X variables? And 

with K binary X variables? 

o How about if we have 2 variables that take on 7 

values each?

As the number of cells grows, we‟ll get lack of 

common support

o cells containing only treated 

observations

o cells containing only controls



An Alternative to solve the 

Dimensionality Problem

Rosenbaum and Rubin (1983) propose an equivalent and feasible 

estimation strategy based on the concept of Propensity Score. 

The propensity score allows to convert the 

multidimensional setup of matching into a one-

dimensional setup. 

In that way, it allows to reduce the dimensionality 

problem.

Rosenbaum and Rubin



Matching based on the Propensity Score

The propensity score is the conditional probability of 

receiving the treatment given the pre-treatment variables:

Lemma 1

Definition

Lemma 2

p(X) =Pr{D = 1|X} = EX{D|X}

If p(X) is the propensity score, then   D  X | p(X)

“Given the propensity score, the pre-treatment variables are 

balanced between beneficiaries and non- beneficiaries”

Y1, Y0  D | X    =>   Y 1, Y0  D | p(X)

“Suppose that assignment to treatment is unconfounded given the 

pre-treatment variables X. Then assignment to treatment is 

unconfounded given the propensity score p(X).”



Does the propensity score approach 

solve the dimensionality problem?

The balancing property of the propensity score 

(Lemma 1) ensures that:

o Observations with the same propensity score have the 

same distribution of observable covariates 

independently of treatment status; and

o for a given propensity score, assignment to treatment 

is “random” and therefore treatment and control units 

are observationally identical on average.

YES!



Implementation of the 

estimation strategy
This suggests the following strategy for the estimation of the 

average treatment effect on the treated, called δ

Estimate the propensity score (see Annex 3)

Step 2

Step 1

Restrict the analysis to the region of common support (key 
source of bias in observational studies)

Step 3
Estimate the average treatment effect by matching based on 
the propensity score



Implementation of the 

estimation strategy

Estimate the propensity score (see annex 3)

Estimate a logit (or probit) model of program participation. 

Predicted values are the  “propensity scores”. 

E.g. With a logit function, see Annex 3.

This step is necessary because the “true” propensity score is 

unknown and therefore the propensity score has to be 

estimated. 

Step 1



When is propensity score 

matching appropriate?

Idea behind propensity score matching: estimation of 

treatment effects requires a careful matching of treated and 

controls.

If treated and controls are very different in terms of 

observables this matching is not sufficiently close and 

reliable or it may even be impossible.

The comparison of the estimated propensity scores across 

treated and controls provides a useful diagnostic tool to 

evaluate how similar are treated and controls, and therefore 

how reliable is the estimation strategy.



Implementation of the 

estimation strategy

Restrict the analysis to the region of common support (key 
source of bias in observational studies)

Step 2



So you want propensity score to be the 

”same” for treatments and controls…

The range of variation of propensity scores should 

be the same for treated and controls.

o Count how many controls have a propensity score lower 

than the minimum or higher than the maximum of the 

propensity scores of the treated

o and vice versa.

Frequency of propensity scores is the same for 

treated and control.

o Draw histograms of the estimated propensity scores for the 

treated and controls. 

o The bins correspond to the blocks constructed for the 

estimation of propensity scores.
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Step 3: Estimate the average treatment effect 

by matching based on the propensity score

o For each participant find a sample of non-participants that 

have “similar” propensity scores. 

o Compare the outcome indicator for each participant and its 

comparison group.

o Calculate the mean of these individual gains to obtain the 

average overall gain (Heckman et al., 1998).
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Step 3
Estimate the average treatment effect by matching based on 
the propensity score



Step 3: Estimate the average treatment effect 

by matching based on the propensity score

“Similar” can be defined in many ways. These different 

weights correspond to different ways of doing matching:

o Stratification on the Score

o Nearest neighbor matching on the Score

o Radius matching on the Score

o Kernel matching on the Score

o Weighting on the basis of the Score



To summarize:
o Matching is the observational analogue of an experiment in 

which placement is independent of outcomes

o The key difference is that a pure experiment does not require 
the essentially untestable assumption of independence 
conditional on observables. 

o PSM requires 
o No selection on unobservables

o Good data

o Common Support

o Matching is often combined with difference-in-differences 
methods
o Matching is performed on baseline characteristics

o DD controls for selection based on time-invariant unobserved 
characteristics

o Caution! Matching with ex post data is very risky



References

Dehejia, R.H. and S. Wahba (1999), “Causal Effects in Non-experimental Studies: 

Reevaluating the Evaluation of Training Programs”, Journal of the American 

Statistical Association, 94, 448, 1053-1062.

Caliendo, M. and S. Kopeinig (2008), “Some Practical Guidance for the 

Implementation of Propensity Score Matching”, Journal of Economic Surveys 22(1).

Heckman, James J. H. Ichimura, and P. Todd (1998), “Matching as an 

econometric evaluation estimator ”, Review of Economic Studies, 65, 261-294.

Imbens. G. W. (2004), “Nonparametric Estimation of Average Treatment Effects 

under Exogeneity: A Review”, The Review of Economic and Statistics 86(1).

Cattaneo, M., S. Galiani, P. Gertler, S. Martinez and R. Titiunik (2009). 
“Housing, Health and Happiness.” American Economic Journal: Economic Policy 1(1).

Ahmed, U.A., A.R. Quisumbing, M. Nasreen, J.F. Hoddinott and E. Bryan 

(2009). “Comparing Food and Cash Transfers to the Ultra Poor in Bangladesh.” 

International Food Policy Research Institute, Research Monograph 63.



References (cont.)

Rosenbaum, P.R. and D.B. Rubin (1983), “The Central Role of the Propensity 

Score in Observational Studies for Causal Effects”, Biometrika 70, 1, 41–55.

LaLonde, R. (1986) “Evaluating the Econometric Evaluations of Training 

Programs with Experimental Data”, American Economic Review 76(4). 

Jalan, J., and M. Ravallion (2003a), “Estimating the Benefit Incidence of an 

Antipoverty Program by Propensity-Score Matching”, Journal of Business & 

Economic Statistics 21(1): 19-30.

Jalan, J., and M. Ravallion (2003b), “Does Piped Water Reduce Diarrhea for 

Children in Rural India “, Journal of Econometrics 112(1): 153-173.



Thank You



Q & A



Annex 1: Average effects of treatment on the 

treated assuming unconfoundedness given X
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Annex 1: Average effects of treatment on the 

treated assuming unconfoundedness given X
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Annex 2: Average effects of treatment 

and the propensity score
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So let's match treatments and controls 

on the basis of the propensity score p(X) instead of X.
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Annex 2: Average effects of treatment 

and the propensity score
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Annex 3: Estimation of the propensity score

Any standard probability model can be used to

estimate the propensity score, e.g. a logit model:

where h(Xi) is a function of covariates with

linear and higher order terms.
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Estimation of the propensity score 

Which higher order terms do you include in 

h(Xi)?
This is determined solely by the need to obtain an 

estimate of the propensity score that satisfies the 

balancing property.

The specification of h(Xi) is (1) more parsimonious 

than the full set of interactions between observables 

X (2) though not too parsimonious: it still needs to 

satisfy the balancing property.

Note: the estimation of the propensity scores does not need

a behavioral interpretation.



An algorithm for estimating the 

propensity score

1. Start with a parsimonious logit or probit function to 

estimate the score.

2. Sort the data according to the estimated propensity 

score (from lowest to highest).

3. Stratify all observations in blocks such that in each block 

the estimated propensity scores for the treated and the 

controls are not statistically different:

a) start with five blocks of equal score range {0 - 0.2, ..., 0.8 - 1}

b) test whether the means of the scores for the treated and the 

controls are statistically different in each block

c) if yes, increase the number of blocks and test again

d) if no, go to next step.



An algorithm for estimating the 

propensity score (continued)

4. Test that the balancing property holds in all blocks for all 

covariates:

a) for each covariate, test whether the means (and possibly 

higher order moments) for the treated and for the controls 

are statistically different in all blocks;

b) if one covariate is not balanced in one block, split the block 

and test again within each finer block;

c) if one covariate is not balanced in all blocks, modify the logit

estimation of the propensity score adding more interaction 

and higher order terms and then test again.

Note: In all this procedure the outcome has no role. 

Use the STATA program pscore.ado,  psmatch2.ado, match.ado

(from STATA type “findit ‘name ado’)

http://www.iue.it/Personal/Ichino/Welcome.html

