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1. Introduction 
 

Today, over 4 billion people around the world—more than half the global population—live in cities. By 

2050, with the urban population more than doubling its current size, nearly 7 of 10 people in the world           

will live in cities. Evidence from today’s developed countries and rapidly emerging economies shows that 

urbanization and the development of cities is a source of dynamism that can lead to enhanced 

productivity. In fact, no country in the industrial age has ever achieved significant economic growth 

without urbanization.  

The underlying driver of this dynamism is the ability of cities to bring people together. Social and economic 

interactions are the hallmark of city life, making people more productive and often creating a vibrant 

market for innovations by entrepreneurs and investors. International evidence suggests that the elasticity 

of income per capita with respect to city population is between 3% and 8% (Rosenthal & Strange 2003).2  

Each doubling of city size raises its productivity by 5%. 

 
1 Authors’ names in alphabetical order. Correspondence to Somik Lall (slall1@worldbank.org). The authors thank 
(a) the German Aerospace Center (DLR) for sharing data on building heights that are critical for this approach; (b) 
the UK DFID for generous financial assistance in deploying this approach and (c) the European Space Agency (ESA) 
for funding the related research in the project "Artificial Intelligence for Smart Cities" [grant number 
4000126100/19/I-EF]. Hogeun Park, Olivia D’Aoust, Swati Sachdeva provided important technical contributions. 
The findings, interpretations, and conclusions expressed in this paper are entirely those of the authors. They do 
not necessarily represent the views of the International Bank for Reconstruction and Development/World Bank 
and its affiliated organizations, or those of the Executive Directors of the World Bank or the governments they 
represent. 
2 After controlling for skill level of the labor force 
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But the coronavirus pandemic is now seriously limiting social interactions. With no vaccine available, 

prevention through containment and social distancing, along with frequent handwashing, appear to be, 

for now, the only viable strategies against the virus. The goal is to slow transmission and avoid 

overwhelming health systems that have finite resources. Hence non-essential businesses have been 

closed and social distancing measures, including lockdowns, are being applied in many countries. 

Will such measures defeat the virus in dense urban areas? In principle, yes.  Wealthier people in dense 

neighborhoods can isolate themselves while having amenities and groceries delivered to them.  Many can 

connect remotely to work, and some can even afford to live without working for a time.  But poorer 

residents of crowded neighborhoods cannot afford such luxuries. They are forced to leave their home 

every day to go to work, buy groceries, and do laundry. This is especially true in low-income 

neighborhoods of developing countries – many of which are slums and informal settlements. In fact, 60 

percent of Africa’s urban population is packed into slums — a far larger share than the average 34 percent 

seen in other developing countries (United Nations 2015). With people tightly packed together, the 

resulting crowding increases contagion risk from the coronavirus. 

Consider Dar es Salaam where 28 percent of residents are living at least three to a room; in Abidjan, the 

figure is 50 percent. Residents in these neighborhoods live in substandard housing and overcrowded 

conditions. They lack open space and suffer from inadequate infrastructure meaning that they share taps 

and latrines, with as many as 200 people per communal facility. In South Africa, for example, only 44.4% 

of people have access to water inside their house and only 60.6% have access to a flush toilet.3 Most 

people living in these communities are daily wage earners in the informal sector, with irregular income 

and insecure jobs. They cannot realistically practice social distancing, nor can they afford it.   

Figure 1: Feasibility of Social Distancing: Density is a symptom; underlying social disparities are the 
drivers 

 
3 New York Times, “How can you social distance when you share a toilet with your neighbor?”, April 3, 2020.  
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Sketch by Somya Bajaj 

 

In regions such as Africa, South Asia, and Central America, the pandemic has yet to peak. Their cities, 

especially the densest ones, will face a great challenge, given their weak infrastructure and limited medical 

and financial resources. To stave off this crisis, emerging hotspots must be anticipated so that medical and 

civil resources can be targeted to limit diffusion into surrounding areas.  Vulnerable groups need to be 

identified in advance, so that they can be supported to weather the storm.  

To help city leaders prioritize resources towards places with the highest exposure and contagion risk, we 

have developed a simple methodology that can be rapidly deployed. This methodology identifies hotspots 

for contagion and vulnerability, based on: 

• The practical inability for keeping people apart, based on a combination of population density 

and livable floor space that does not allow for 2 meters of physical distancing. 

• Conditions where, even under lockdown, people might have little option but to cluster (e.g., to 

access public toilets and water pumps).  

 

We outline the methodology in section 2. Section 3 describes the data. We present 3 pilot applications 

in Section 4. Section 5 concludes. 
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2. Methodology 
 

Contagion will increase with social interaction. A person in a crowded slum is likely to have close contact 

with more people than someone living in a suburban community. Moreover, people in small homes or 

shacks are usually forced to move out more frequently, often for accessing basic services such as water 

taps and toilets.  

People living in such crowded communities are more vulnerable. To get reasonable estimates of crowding, 

it is important to get information on livable floor space available to individuals and families. Raw measures 

of density (people per unit of land) need to be adjusted to measure livability (people per unit of floor 

space).  Consider two cities: New York City (Manhattan) and Bombay (Mumbai). They both have similar 

population densities at around 25,000 people per square km. However, the way these densities translate 

into living space is completely different. Having 25,000 persons on a square km living in 10-story 

apartment buildings will be very different compared to the same number of people living in single story 

shacks. Figure 2 shows that distribution of building heights for New York and Mumbai. When we consider 

building heights, New York’s total floor area is almost 4 times that of Mumbai. The additional living space 

(coupled with amenities) in New York makes it easier for people to maintain the required social distance 

and to self-isolate. While people in Mumbai will struggle to even maintain social distance at home due to 

the lack of sufficient floor space, many in slums will be forced to interact outside their homes, for instance, 

to access communal water and sanitation facilities.  

Figure 2: Distribution of Building Heights - New York and Mumbai 

New York Mumbai 

 
Distribution of Average Building Height per 100-meter pixel, 
with a vertical resolution of 1 meter, in New York, including 
only pixels with an average height higher than 10 meters 
(based on data from DLR) 

 
Distribution of Average Building Height per 100 meter pixel, 
with a vertical resolution of 1 meter, in Mumbai, including 
only pixels with an average height higher than 10 meters 
(based on data from DLR) 
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We use adjusted densities based on floor areas as the first step in developing our measure of coronavirus 

contagion. To calculate floor area, we first construct an adjusted measure of population density that 

incorporates the building structure. We define adjusted population density at the pixel level as follows: 

𝐷𝑖 =  
𝑃𝑖

 𝑇𝐹𝐴𝑖
 

where 𝑖 identifies a pixel, 𝑃𝑖 is the population of pixel 𝑖, and 𝑇𝐹𝐴𝑖 is the total floor area of pixel 𝑖. The total 

floor area is calculated as: 

𝑇𝐹𝐴𝑖 =
𝐻𝑖 ∗ 𝐿𝑖

3
 

where 𝐻𝑖 denotes the average height of pixel 𝑖, 𝐿𝑖 is the built surface area of pixel 𝑖, and 3 is the average 

floor height (assuming an average floor height of 3 meters).  

The pixel level density gives us a first notion of where the most crowded areas are located in a city. Social 

distancing norms require that any person needs to maintain a distance of at least 2 meters to the nearest 

person; a person needs a minimum of 3.464 square meters of space around them. 4 This translates to a 

density of approximately 0.29 persons per square meter of floor space. Places where density surpasses 

this threshold are those where people cannot comply with the minimum social distance requirements due 

to lack of available living space. 

However, a static measure of density is not enough. A person will move not only around her “not so big” 

house but may also need to travel a “relatively small” distance to access certain amenities or shop for 

basic products (e.g. groceries). She will necessarily interact with the people in her neighborhood, making 

crowded neighborhoods even more prone to a viral spread. The concentration of people in the 

neighborhood is then also important to understand how much exposure a person may face.  

To calculate the potential exposure of a person, we need to account for the density of her neighborhood. 

Assuming people will travel short distances during lockdown, we considered the eight neighboring pixels 

as the limit of mobility (queen contiguity). When using a grid with 100x100 meter resolution, this 

represents a neighborhood with a radius of approximately 100-150 meters. We take 9 pixels at a time and 

 
4 The preferred lattice to accommodate people more efficiently is the hexagon. We draw a hexagon grid and locate 
people in the center of each hexagon. In order to have people respect the required social distance (2 meters), each 
hexagon needs to have a side of 1.15 meters, with a surface of 3.464 square meters. Then, one person will need a 
space of 3.464 square meters. This translates in a threshold of 0.289 (Pop/TFA>0.289). 
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assign the sum of population per unit of TFA for the nine pixels to the reference (central) pixel. This gives 

us a better approximation of the exposure that a person living in the central pixel may face.  

This measure of density and minimal mobility allows us to identify the first set of potential hotspots. 

However, people living in informal settlements face an extra challenge: they need to move to access 

water, toilet facilities, and other basic services, even under a lockdown scenario. We account for mobility 

and concentration in these service spots and find a set of additional hotspots. 

To generate these additional hotspots, we first identify two types of pixels: service pixels, where a specific 

service is located, and transit pixels. Before looking into pixel density, we need to consider two facts. First, 

more people will concentrate on service pixels. It is expected that these pixels will be potential hotspots, 

since people from the neighborhood will concentrate around the service often (water kiosk, toilet). 

Second, more people will pass through other pixels on their way to the service pixel. Even though pixels 

that are not service pixels will not concentrate people per se, they will still experience more traffic of 

people. The volume of traffic in these transit pixels will depend on how close they are to the service pixel.  

We define 𝑑𝑖,𝑠 as the distance from the centroid of pixel 𝑖 to the nearest service pixel 𝑠. For any given pixel 

(service or transit), the number of people they receive (concentration of people or through traffic) 

depends on the density of the neighboring pixels, 
𝑃𝑜𝑝𝑗

𝑇𝐹𝐴𝑗
, where 𝑗 denotes all neighboring pixels that will go 

to the service pixel or pass through a transit pixel. The density of each pixel 𝑖 is weighted by the distance 

from pixel 𝑖 to the neighboring pixel 𝑗, denoted as 𝑑𝑗. The assumption is that  people in the contiguous 

pixel will probably pass  through pixel 𝑖 on their way to the service pixel, while people on a pixel that is 

500 meters away may take a different route, so density of pixels further away have a smaller impact on 

pixel 𝑖.5 Then, the density of pixel 𝑖 is a function of population, TFA, and two distances: distance from the 

neighboring pixels 𝑗 to pixel 𝑖 and distance to the service pixel, i. e., 𝐷𝑖 = 𝑓 (
𝑃𝑜𝑝

𝑇𝐹𝐴
, 𝑑𝑗, 𝑑𝑠). 

The new pixel density can be defined as follows:  

𝐷𝑖 =
𝑃𝑖

𝑇𝐹𝐴𝑖
+ ∑

𝑃𝑗
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5 This assumption is motivated by the market access literature that uses distance to discount for the lower effect 
that some variables (such as demand, wages) have, the further away they are (see Harris, 1954, Davis and Weinstein, 
2003; Head and Mayer, 2004) 
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where 𝑆𝑖 is a dummy variable equals to 1 if the pixel is a service pixel, and 0 otherwise. Introducing this 

dummy variable allows us to separate the fact that service pixels are different from transit pixels. On the 

one hand, more people will agglomerate in a service pixel. When 𝑆𝑖 = 1 we add to our original density, 

the people from the defined neighborhood that will come to the service pixel. We use 𝑁 to define the 

number of pixels in the neighborhood. For example,  for a neighborhood that includes pixels in a 200-250 

meter radius, 𝑁 = 25. On the other hand, people will pass through transit pixels. When 𝑆𝑖 = 0 we add 

just a proportion of people that will go through transit pixels on their way to the service pixel. 

This equation accounts for both, density considering where people live (first two terms), and density 

considering concentration at a service facility or some mobility towards it (third and last term, 

respectively). The last term of the equation is multiplied by a constant, in this case, 
1

8
, to consider the fact 

that not all the people in the defined neighborhood will cross through the pixel to access the service pixel. 

Since each pixel is surrounded by 8 neighboring pixels, one can think of 8 possible directions from where 

people can cross. Using 
1

8
 simplifies the calculation and considers only one direction. Note here that we 

are currently using straight line distance (as the crow flies) to measure interactions between where people 

live and where service points are located. In refining the methodology, we will apply network distances 

to refine these estimates. 

3. Data 
 

The methodology is applied to data using globally sourced datasets on population, average building 

heights, and location of key services. Because of the importance of deploying this analysis rapidly and 

since local data coverage may be scarce and difficult to access during the pandemic, this methodology 

primarily relies on global datasets. Since we are trying to roll our this approach to support decision making 

over the next 4-6 weeks, we have had to make a trade-off between speed of delivery and granularity of 

the data. The team is taking a ‘good enough’ approach for the analysis where the core data and 

methodology is analytically robust but not ‘perfect’. While the team is making all possible attempts to 

refine the hotspots to take local information on amenities, transport networks, and housing quality into 

account, relying on global data as the base template makes it possible to immediately support cities during 

the pandemic. 

 We use three basic datasets for the analysis.  
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• First, we use WorldPop population 2019 raster6 or Facebook 2019 population raster7, depending 

on the city. These rasters contain the estimated number of people that lives in each pixel, with a 

resolution of 100x100 meters or 30x30 meters, respectively. While we used global population 

datasets, the analysis can be easily adjusted if local sources are available. Population data from 

local sources may be more accurate than a global population raster. Some cities have developed 

spatial datasets at considerable high levels of disaggregation, although generally not at the pixel 

level. The challenge relies on creating a population grid based on these datasets, which usually 

implies modelling on assigning population to pixels, based on land use and built-up areas.8  

 

• Second, we use DLR's World Settlement Footprint 3D product (WSF-3D) that is derived from ALOS 

World 3D (AW3D30) digital terrain model and the WSF 2015 settlement layer. Starting from 

satellite images at a finer resolution, and using digital terrain models, DLR extracts building heights 

and creates a 100 x 100 meter raster with the average building height (with a vertical resolution 

set to 1m).9  

 

• The third dataset is a layer with the location of key services, such as water kiosks, public toilets, 

obtained from Open Street Maps Platform (OSM).10 

Here is an example showing the base data for Mumbai. Figure 3 shows the distribution of population, 

where denser areas are highlighted in dark red, and the location of public toilets and water points are 

marked as dots (dots with an H and solid dots, respectively). Figure 4 shows the average heights across 

for the city, in meters.  

 

 

 
6 See https://www.worldpop.org/ for details on WorldPop data and methodology.  
7 See https://dataforgood.fb.com/ for details on Facebook data and https://dataforgood.fb.com/tools/population-
density-maps/ for more details on Facebook population maps. 
8 The German Aerospace Center (DLR)  has developed a model to generate population grid datasets based on 
spatially disaggregated population data. The team is working with them to generate better population grids when 
local data is available. 
9 Although this data has been collected between 2006 and 2011, it corresponds to one point in time. 
10 © OpenStreetMap contributors. This database is open source, licensed under 
opendatacommonsopendatabaselicensed (ODbL, opendatacommons.org) 
https://www.openstreetmap.org/copyright.  

https://www.worldpop.org/
https://dataforgood.fb.com/
https://dataforgood.fb.com/tools/population-density-maps/
https://dataforgood.fb.com/tools/population-density-maps/
https://www.openstreetmap.org/copyright
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Figure 3: Mumbai - Population and Location of Key Services 

Source: Population data from WorldPop 2019, water points and public toilets from Open Street Maps 

Figure 4: Average Heights 

 
Source: Average height in meters, at the pixel level (based on data from the German Aerospace Center)  
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Other datasets may also be useful in identifying key services. For example, cellular data can be a good 

source to find specific points of interest towards where people move. By combining this with OSM, one 

can filter places where people concentrate that could potentially be shuttered under a lockdown scenario 

(school, places of work, certain amenities). Moreover, if water provision is done through mobile tanks, we 

can potentially identify open spaces within an informal settlement, as a proxy to where these tanks can 

be located.  

However, these extra data needs compromise the possibility of rapidly scaling up this analysis to several 

cities across the world. For example, mobile data are currently available only in a small set of developing 

countries, and coverage sometimes is not as thorough as in US or Europe. Furthermore, the use of cell 

phones in informal settlements may be limited, which could bias the estimates of hotspots. For these 

reasons, we rely on global and already available datasets for this analysis11, to show how this could 

potentially be scaled up globally. Clearly, if there are better data sources available for a particular city, this 

could be incorporated and will provide more insights on the identification of potential hotspots. 

4. Hotspots in Action 
 

We now describe the application of the methodology in three cities – Mumbai, Kinshasa12, and Cairo. We 

first combine the population layer with the heights data to obtain our first adjusted density measure. This 

density measure takes into account the total space available per person. The next step is to account for 

minimal mobility around the neighboring pixels, using the queen contiguity criteria. After assigning the 

new density measures to each pixel, we use our pre-defined threshold of 0.29 to identify those pixels with 

a population density that does not allow people to maintain the required social distance of 2 meters. 

We identify these sets of hotspots in figures 5 to 7. The red areas correspond to potential hotspots, that 

is, areas where the population density (accounting for minimum mobility around the neighboring pixels) 

surpasses the minimum threshold required to maintain social distance. In Mumbai, these hotspots 

represent approximately 104.5 𝑘𝑚2 that account for approximately 4.5 million people. In a city with an 

estimated total population of 20 million, we find that approximately 20% of the population will not be 

 
11The simplified WSF3D dataset developed by DLR is currently available for a sample of 397 cities. We provide a list 
of countries for which we have heights data (for a subset of cities, depending on the country) in Annex I. 
12 Facebook population raster for Kinshasa shows a total of 5.7 people. However, current population in Kinshasa is 
approximately 14 million. We adjusted Facebook population estimates to reach this number, assuming the extra 
population follows the same distribution shown in the Facebook population raster. 
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able to maintain social distance and be at risk of rapid contagion. In Kinshasa, the hotspots cover 

approximately 105 𝑘𝑚2, with a total of 6.11 million people at risk (approximately 43% of the total 

population).13  In Cairo hotspots cover almost 84 𝑘𝑚2, accounting for 5.5 million people (approximately 

25% of the total population). 

Figure 5: Potential Hotspots in Mumbai - Population Density and Minimal Mobility

 

Source: This map combines two pixel-level datasets: population data from WorldPop and heights data 
from DLR. The red areas represent the hotspots. 

 

 

 

 

 

 
13 For Kinshasa, we focus on hotspots in areas where construction is precarious, using data from a World Bank 
survey on Access to Housing and Services in Kinshasa Province. 
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Figure 6: Potential Hotspots in Kinshasa - Population Density and Minimal Mobility 

 
Source: This map combines two pixel-level datasets: population data from Facebook and heights data from the 
DLR, and data from the World Bank survey on Access to Housing and Services in Kinshasa Province showing areas 
where construction is precarious. The red areas represent the hotspots.  
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Figure 7: Potential Hotspots in Cairo - Population Density and Minimal Mobility

 

Source: This map combines two pixel-level datasets: population data from WorldPop and heights 
data from the DLR. The red areas represent the hotspots. 

The fact that most of the affected population may live in informal settlements poses an extra concern. For 

example, people in these hotspots may not have access to water, which limits their ability to practice a 

proper hygiene routine, increasing the chances of contagion and viral spread. Some areas may have high 

levels or air pollution due to the type of cooking fuel used by households or illegal dumping and burning 

in the area. Since air pollution can cause lung and heart disease, these people may have a higher risk of 

complications from COVID-19. 

After incorporating location of key services and mobility towards these services, we identify a second set 

of hotspots (Figures 8 to 10, in purple). For Mumbai, we use the location of public toilets as an example 

to a key service that people will still use even under lockdown. We find that additional hotspots cover an 

extra 15 𝑘𝑚2, located often nearby the previous set of hotspots, with a few new areas affected as well. 

These extra hotspots account for more than 600 thousand people, bringing the total affected population 
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to 5.2 million (representing an increase of 15 percentage points of people at risk). In Kinshasa, we use the 

location of water kiosks as the key service of interest. We find that additional hotspots cover 

approximately 10 𝑘𝑚2 more, bringing the total number of people affected to 6.42 million (an increase of 

5 percentage points of people at risk). In Cairo, we use the location of public toilets to find additional 

hotspots. These additional hotspots add 15 𝑘𝑚2 (to a total of almost 100 𝑘𝑚2) and the total number of 

affected people increases almost 11 percentage points (reaching 28% of the total population). 

Figure 8: Potential Hotspots in Mumbai - Population Density, Service Location and Mobility

 

Source: This map combines two pixel-level datasets: population data from WorldPop and 
heights data from the DLR,  as well as location of public toilets (OSM). The purple areas 
represent additional hotspots. 
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Figure 9: Potential Hotspots in Kinshasa - Population Density, Service Location and Mobility

 

Source: This map combines two pixel-level datasets: population data from Facebook and heights data from DLR, 
location of water kiosks (OSM), and data from a World Bank survey on Access to Housing and Services in Kinshasa 
Province showing areas where construction is precarious. The purple areas represent additional hotspots. 
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Figure 10: Potential Hotspots in Cairo - Population Density, Service Location and Mobility 

 

Source: This map combines two pixel-level datasets: population data from WorldPop and heights data 
from the DLR, as well as location of water kiosks (OSM). The purple areas represent additional hotspots. 

 

5. Conclusion 
 

To help city leaders and communities manage the pandemic, our methodology and decision support tool 

can provide an evidence-based approach to target emergency interventions that avoid a rapid spread of 

the virus in these hotspots. These include investments to improve infrastructure services on a temporary 

basis (e.g., additional water distribution points, portable hand washing sites, or distribution of pee-poo 

bags, among others) as well as long-term investments in slum upgrading that would focus on 

infrastructure and service delivery, land tenure security, and housing improvements.  

The methodology is simple and can be easily replicated using global data. The main data innovation has 

been to adjust population densities by introducing measures of floor space. This distinction is important 
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in considerations of the extent to which people can maintain spatial separation of 2 meters to decrease 

the risk of contagion.  

More granular data on location of informal settlements and mobility towards specific spots can enrich the 

detection of potential hotspots. Future work can focus on refining the methodology and incorporating 

more granular data sources. Mobile data is a potential good data source to identify specific spots that are 

the most frequently visited. Location of slums and informal settlements in a city can help validate results 

and gain a better understanding of the magnitude of a viral spread and the number of people at risk. 
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Annex I 

 

List of Countries 

Afghanistan United Kingdom Philippines 

Angola Ghana Poland 

United Arab Emirates Guinea North Korea 

Argentina Greece Palestine 

Australia Guatemala Romania 

Austria Hungary Russia 

Azerbaijan Indonesia Rwanda 

Belgium India Saudi Arabia 

Bangladesh Iran Sudan 

Belarus Iraq Senegal 

Bolivia Israel Singapore 

Brazil Italy El Salvador 

Canada Japan Somalia 

Switzerland Kazakhstan Serbia 

Chile Kenya Syria 

China South Korea Thailand 

CÃ´te d'Ivoire Libya Tajikistan 

Cameroon Lithuania Tunisia 

Cameroon Morocco Turkey 

Democratic Republic of the Congo Mexico Taiwan 

Colombia Mali Tanzania 

Cuba Myanmar Uganda 

Germany Mongolia Ukraine 

Denmark Mozambique United States 

Algeria Malaysia Uzbekistan 

Ecuador Nigeria Venezuela 

Egypt Nicaragua Vietnam 

Spain Netherlands Yemen 

Ethiopia Nepal South Africa 

Fiji New Zealand Zambia 

France Pakistan   

 


