Unintended consequences:
can the rise of the educated class explain the revival of protectionism?

Paolo Giordani1 Fabio Mariani2,3

1LUISS, Rome
2IRES, Université Catholique de Louvain
3IZA, Bonn

\textit{ABCDE Conference, World Bank, 17-18 June 2019}
Motivation and research question

Protectionism is on the rise in Western democracies: Brexit, US, Italy, etc.
Motivation and research question

Protectionism is on the rise in Western democracies: Brexit, US, Italy, etc.

Trade

- has distributive effects (winners and losers), but
- brings about aggregate gains.
Motivation and research question

Protectionism is on the rise in Western democracies: Brexit, US, Italy, etc.

Trade

- has distributive effects (winners and losers), but
- brings about aggregate gains.

Why emptying the baby out with the bathwater?
Motivation and research question

Protectionism is on the rise in Western democracies: Brexit, US, Italy, etc.

Trade

- has distributive effects (winners and losers), but
- brings about aggregate gains.

Why emptying the baby out with the bathwater?

Our politico-economic explanation: the (endogenous) rise of the educated class erodes the political support for redistribution, so that the losers from trade prefer protectionism
Our model: overview

Our theory is articulated into three parts:
Our model: overview

Our theory is articulated into three parts:

1. a simple specific-factor **trade** model à la Ricardo-Viner (Jones, 1971; Mussa, 1974; Mayer, 1974; Neary, 1978) with distributive implications;
Our theory is articulated into three parts:

1. a simple specific-factor **trade** model à la Ricardo-Viner (Jones, 1971; Mussa, 1974; Mayer, 1974; Neary, 1978) with distributive implications;

2. **political economy**: two-stage voting game on trade openness and redistribution;
Our model: overview

Our theory is articulated into three parts:

1. a simple specific-factor trade model à la Ricardo-Viner (Jones, 1971; Mussa, 1974; Mayer, 1974; Neary, 1978) with distributive implications;

2. political economy: two-stage voting game on trade openness and redistribution;

3. dynamics: taxes finance a public good, which promotes human capital accumulation.
Our research is related to several strands of literature, i.e.

1. political attitudes towards globalization:
Our research is related to several strands of literature, i.e.

1. political attitudes towards globalization:

2. determinants of populism:
 Guiso et al. (2017, 2018), Inglehart and Norris (2016)

3. distributive effects of trade:

4. human capital accumulation and inequality:
The economic environment: industries and agents

Two perfectly competitive industries:

- exporting \((X)\), and
- importing \((M)\).
Two perfectly competitive industries:
- exporting (X), and
- importing (M).

Population of unit mass:
- \(\lambda \in (1/2, 1) \) workers, and
- \(1 - \lambda \) entrepreneurs.
Industries and agents

Entrepreneurs are *sector-specific*:

- $\gamma (1 - \lambda)$ in sector X (denoted by x),
- $(1 - \gamma)(1 - \lambda)$ in sector M (denoted by m).
Industries and agents

Entrepreneurs are *sector-specific*:

- \(\gamma (1 - \lambda) \) in sector \(X \) (denoted by \(x \)),
- \((1 - \gamma)(1 - \lambda) \) in sector \(M \) (denoted by \(m \)).

As far as workers are concerned,

- \(\sigma \lambda \) are skilled (\(s \)) and perfectly mobile across industries,
- \((1 - \sigma) \lambda \) are unskilled (\(u \)) and imperfectly mobile.
Production

Production in the two sectors takes place according to

$$Y_X = AP \left[\gamma (1 - \lambda) \right]^{1-\alpha-\beta} \left[\theta_s \sigma \lambda \right]^\alpha \left[\theta_u (1 - \sigma) \lambda \right]^\beta$$ \hspace{1cm} (1)

and

$$Y_M = \left[(1 - \gamma) (1 - \lambda) \right]^{1-\alpha-\beta} \left[(1 - \theta_s) \sigma \lambda \right]^\alpha \left[(1 - \theta_u) (1 - \sigma) \lambda \right]^\beta,$$ \hspace{1cm} (2)

where:

- θ_s and θ_u are (endogenous) labor shares (in X),
- $A \in \mathbb{R}_+$ is TFP in X,
- $P \in [\underline{P}, \overline{P}]$ is the relative price in sector X (\leftarrow proxy for trade openness, as in Grossman et al. (2017), etc.).
Factor allocation

Factors are paid their marginal productivity (MP). The allocation of workers (θ_s, θ_u) is obtained from factor income equalization:

$$y_{M,i} = y_{X,i} \text{ for } i = s, u.$$
Factor allocation

Factors are paid their marginal productivity (MP). The allocation of workers \((\theta_s, \theta_u)\) is obtained from factor income equalization:

\[
y_{M,i} = y_{X,i} \text{ for } i = s, u.
\]

For the skilled, \(MP_{M,s} = MP_{X,s}\).
Factor allocation

Factors are paid their marginal productivity (MP). The allocation of workers \((\theta_s, \theta_u)\) is obtained from factor income equalization:

\[
y_{M,i} = y_{X,i} \text{ for } i = s, u.
\]

For the skilled, \(MP_{M,s} = MP_{X,s}\).

Unskilled workers incur an access cost to sector \(X\),
Factor allocation

Factors are paid their marginal productivity (MP). The allocation of workers \((\theta_s, \theta_u)\) is obtained from factor income equalization:

\[
y_{M,i} = y_{X,i} \text{ for } i = s, u.
\]

For the skilled, \(MP_{M,s} = MP_{X,s}\).

Unskilled workers incur an access cost to sector \(X\), so that

\[
MP_{M,u} = \frac{MP_{X,u}}{\phi P},
\]

with \(\phi > 0\).
Trade and factor incomes

After finding θ_s^* and θ_u^*, we can study how incomes depend on trade openness.
Trade and factor incomes

After finding θ_s^* and θ_u^*, we can study how incomes depend on trade openness.

Lemma 1

An increase in P (i) raises y_x and y_s, (ii) lowers y_m, and (iii) lowers y_u as long as $\phi P > 1$.
Assumption 1

Parameters are such that:

1. \(P > \beta_1 - \beta_A \)

2. \(P > \beta_1 - \beta_A - \alpha - \beta_1 \alpha \)

3. \(P < \beta_1 - \beta_A \)

The above restrictions on the parameter space allow us to “freeze” the ranking of incomes, thus simplifying the analysis.

Lemma 2

Under Assumption 1, we have \(y_x > y_m > y_s > y_u \).
Assumption 1

Parameters are such that:

1. \(\sigma < \frac{\alpha}{\alpha + \beta} \);
Assumption 1

Parameters are such that:

1. \(\sigma < \frac{\alpha}{\alpha + \beta} \);

2. \(\bar{P} > \frac{\phi^{1-\beta}}{A^{1-\beta}} \left(\frac{\alpha (1 - \lambda) (1 - \gamma)}{\lambda \sigma (1 - \alpha - \beta) - \alpha \gamma (1 - \lambda)} \right)^{\frac{1 - \alpha - \beta}{1 - \beta}} \);

3. \(\bar{P} < \frac{\phi^{1-\beta}}{A^{1-\beta}} \left(\frac{\lambda \sigma (1 - \alpha - \beta) - \alpha (1 - \gamma) (1 - \lambda)}{\alpha \gamma (1 - \lambda)} \right)^{\frac{1 - \alpha - \beta}{1 - \beta}} \).
Ranking of incomes

Assumption 1

Parameters are such that:

1. \(\sigma < \frac{\alpha}{\alpha + \beta} \);

2. \(P > \frac{\phi^\frac{\beta}{1-\beta}}{A^{\frac{1}{1-\beta}}} \left(\frac{\alpha (1 - \lambda) (1 - \gamma)}{\lambda \sigma (1 - \alpha - \beta) - \alpha \gamma (1 - \lambda)} \right)^{\frac{1-\alpha-\beta}{1-\beta}} \);

3. \(\overline{P} < \frac{\phi^\frac{\beta}{1-\beta}}{A^{\frac{1}{1-\beta}}} \left(\frac{\lambda \sigma (1 - \alpha - \beta) - \alpha (1 - \gamma) (1 - \lambda)}{\alpha \gamma (1 - \lambda)} \right)^{\frac{1-\alpha-\beta}{1-\beta}} \).

The above restrictions on the parameter space allow us to “freeze” the ranking of incomes, thus simplifying the analysis.
Assumption 1

Parameters are such that:

1. \(\sigma < \frac{\alpha}{\alpha + \beta} \);

2. \(\frac{1}{P} > \frac{\phi^{1-\beta}}{A^{1-\beta}} \left(\frac{\alpha (1 - \lambda) (1 - \gamma)}{\lambda \sigma (1 - \alpha - \beta) - \alpha \gamma (1 - \lambda)} \right)^{\frac{1}{1-\beta}} \);

3. \(\frac{1}{\bar{P}} < \frac{\phi^{1-\beta}}{A^{1-\beta}} \left(\frac{\lambda \sigma (1 - \alpha - \beta) - \alpha (1 - \gamma) (1 - \lambda)}{\alpha \gamma (1 - \lambda)} \right)^{\frac{1}{1-\beta}} \).

The above restrictions on the parameter space allow us to “freeze” the ranking of incomes, thus simplifying the analysis.

Lemma 2

Under Assumption 1, we have \(y_x, y_m > y_s > y_u \).
Setting up the problem

We consider a two-stage voting game, in which agents decide by majority on

1. trade openness \((P)\),
2. taxation \((\tau)\).
Setting up the problem

We consider a two-stage voting game, in which agents decide by majority on

1. trade openness \((P)\),
2. taxation \((\tau)\).

Utility depends on consumption of private and public goods:

\[
U (c_X, c_M, G) = c_X^\mu c_M^{1-\mu} + \delta \ln G. \tag{4}
\]

with \(\mu \in (0, 1)\) and \(\delta > 0\).
Setting up the problem

We consider a two-stage voting game, in which agents decide by majority on

1. trade openness \((P)\),
2. taxation \((\tau)\).

Utility depends on consumption of private and public goods:

\[
U(c_X, c_M, G) = c_X^\mu c_M^{1-\mu} + \delta \ln G. \tag{4}
\]

with \(\mu \in (0, 1)\) and \(\delta > 0\).

The government budget constraint is

\[
G = \tau Y, \tag{5}
\]

with \(Y = PY_X + Y_M\).
The preferred tax rate by agent $i = \{s, u, x, m\}$ is

$$
\tau_i^* = \frac{\delta \left(\frac{P}{1-\mu} \right)^{1-\mu} \left(\frac{1}{\mu} \right)^\mu}{y_i}.
$$

(6)
Political preferences over taxation

The preferred tax rate by agent $i = \{s, u, x, m\}$ is

$$\tau_i^* = \frac{\delta \left(\frac{P}{1-\mu} \right)^{1-\mu} \left(\frac{1}{\mu} \right)^{\mu}}{y_i}.$$ \hfill (6)

Given Lemma 1, political preferences on taxation can be ranked as follows

Lemma 3

Under Assumption 1, we have $\tau_u^ > \tau_s^* > \tau_m^*, \tau_x^*$.***
Voting on taxation

Political preferences are aggregated by majority voting, where τ^M is the preferred tax rate of the median voter.
Voting on taxation

Political preferences are aggregated by majority voting, where τ^M is the preferred tax rate of the median voter.

Proposition 1

The median voter on τ is always a worker, unskilled if $\lambda (1 - \sigma) \geq 1/2$ and skilled otherwise, i.e.

$$
\tau^M = \begin{cases}
\tau_u^* & \text{if } \sigma \leq 1 - \frac{1}{2\lambda} \\
\tau_s^* & \text{if } \sigma > 1 - \frac{1}{2\lambda}.
\end{cases}
$$

(7)
Voting on taxation

Political preferences are aggregated by majority voting, where τ^M is the preferred tax rate of the median voter.

Proposition 1

The median voter on τ is always a worker, unskilled if $\lambda (1 - \sigma) \geq 1/2$ and skilled otherwise, i.e.

$$\tau^M = \begin{cases}
\tau_u^* & \text{if } \sigma \leq 1 - \frac{1}{2\lambda} \\
\tau_s^* & \text{if } \sigma > 1 - \frac{1}{2\lambda}
\end{cases}$$

(7)

Let us define

$$\sigma' \equiv 1 - \frac{1}{2\lambda}.$$
Political preferences over trade openness

Individual attitudes towards P are formed by taking into account the outcome of the vote on τ.
Political preferences over trade openness

Individual attitudes towards P are formed by taking into account the outcome of the vote on τ.

Lemma 4

We have the following ranking of preferences over trade openness (across types):

$$P_x^*(\tau^M) > P_s^*(\tau^M) > P_u^*(\tau^M) > P_m^*(\tau^M).$$
Political preferences over trade openness

Individual attitudes towards P are formed by taking into account the outcome of the vote on τ.

Lemma 4

We have the following ranking of preferences over trade openness (across types):

$$P^*_x(\tau^M) > P^*_s(\tau^M) > P^*_u(\tau^M) > P^*_m(\tau^M).$$

In the absence of adequate redistribution, the losers from trade would like to reduce trade openness.

Lemma 5

*Unskilled workers become more hostile to trade when the median voter on τ becomes a skilled worker, i.e. $P^*_u(\tau^*_s) < P^*_u(\tau^*_u)$.***
Voting on trade openness

Preferences on trade openness are also aggregated by majority voting.
Voting on trade openness

Preferences on trade openness are also aggregated by majority voting.

Proposition 2

The median voter on \(P \) is always a worker, unskilled if
\[
\lambda (1 - \sigma) + (1 - \lambda) (1 - \gamma) \geq 1/2 \quad \text{and skilled otherwise, i.e.}
\]

\[
P^M = \begin{cases}
P_u^* & \text{if } \sigma \leq \frac{1}{2\lambda} - \frac{\gamma (1 - \lambda)}{\lambda} \\
1 & \text{if } \sigma > \frac{1}{2\lambda} - \frac{\gamma (1 - \lambda)}{\lambda}
\end{cases}
\]

(8)
Voting on trade openness

Preferences on trade openness are also aggregated by majority voting.

Proposition 2

The median voter on P is always a worker, unskilled if

$$\lambda (1 - \sigma) + (1 - \lambda) (1 - \gamma) \geq 1/2$$

and skilled otherwise, i.e.

$$P^M = \begin{cases}
 P^*_u & \text{if } \sigma \leq \frac{1}{2\lambda} - \frac{\gamma (1 - \lambda)}{\lambda} \\
 P^*_s & \text{if } \sigma > \frac{1}{2\lambda} - \frac{\gamma (1 - \lambda)}{\lambda}
\end{cases}$$

(8)

Let us define

$$\sigma'' \equiv \frac{1}{2\lambda} - \frac{\gamma (1 - \lambda)}{\lambda}.$$
The political equilibrium

(1) If $\sigma \leq \sigma'$, u is median voter on both τ and P;
The political equilibrium

(1) If $\sigma \leq \sigma'$, u is median voter on both τ and P;
(2) If $\sigma' < \sigma \leq \sigma''$, u is median voter on P, s is median voter on τ;
The political equilibrium

(1) If $\sigma \leq \sigma'$, u is median voter on both τ and P;
(2) If $\sigma' < \sigma \leq \sigma''$, u is median voter on P, s is median voter on τ;
(3) If $\sigma > \sigma''$, s is median voter on both τ and P.

Proposition 3

The political equilibrium is such that

$$(P^M; M) =
\begin{cases}
(P^* u^* u^*); & \text{if } \sigma \leq \sigma' \text{ (reg. 1)} \\
(P^* u^* s^* s^*); & \text{if } \sigma' < \sigma \leq \sigma'' \text{ (reg. 2)} \\
(P^* s^* s^* s^*); & \text{if } \sigma > \sigma'' \text{ (reg. 3)}
\end{cases}$$
The political equilibrium

(1) If \(\sigma \leq \sigma' \), \(u \) is median voter on both \(\tau \) and \(P \);
(2) If \(\sigma' < \sigma \leq \sigma'' \), \(u \) is median voter on \(P \), \(s \) is median voter on \(\tau \);
(3) If \(\sigma > \sigma'' \), \(s \) is median voter on both \(\tau \) and \(P \).
The political equilibrium

(1) If $\sigma \leq \sigma'$, u is median voter on both τ and P;
(2) If $\sigma' < \sigma \leq \sigma''$, u is median voter on P, s is median voter on τ;
(3) If $\sigma > \sigma''$, s is median voter on both τ and P.

Proposition 3
The political equilibrium is such that

$$
(P^M, \tau^M) = \begin{cases}
(P_u^*(\tau_u^*), \tau_u^*) & \text{if } \sigma \leq \sigma' \text{ (reg. 1)}
\end{cases}
$$
The political equilibrium

(1) If $\sigma \leq \sigma'$, u is median voter on both τ and P;
(2) If $\sigma' < \sigma \leq \sigma''$, u is median voter on P, s is median voter on τ;
(3) If $\sigma > \sigma''$, s is median voter on both τ and P.

Proposition 3

The political equilibrium is such that

\[
(P^M, \tau^M) = \begin{cases}
(P_u^*(\tau_u^*), \tau_u^*) & \text{if } \sigma \leq \sigma' \text{ (reg. 1)} \\
(P_u^*(\tau_s^*), \tau_s^*) & \text{if } \sigma' < \sigma \leq \sigma'' \text{ (reg. 2)}
\end{cases}
\]
The political equilibrium

(1) If $\sigma \leq \sigma'$, u is median voter on both τ and P;
(2) If $\sigma' < \sigma \leq \sigma''$, u is median voter on P, s is median voter on τ;
(3) If $\sigma > \sigma''$, s is median voter on both τ and P.

Proposition 3

The political equilibrium is such that

\[
(P^M, \tau^M) = \begin{cases}
(P_u^* (\tau_u^*), \tau_u^*) & \text{if } \sigma \leq \sigma' \text{ (reg. 1)} \\
(P_u^* (\tau_s^*), \tau_s^*) & \text{if } \sigma' < \sigma \leq \sigma'' \text{ (reg. 2)} \\
(P_s^* (\tau_s^*), \tau_s^*) & \text{if } \sigma > \sigma'' \text{ (reg. 3)}
\end{cases}
\]
Human capital accumulation (social mobility)

We now endogenize the proportion of skilled agents, σ.
Human capital accumulation (social mobility)

We now endogenize the proportion of skilled agents, σ. The evolution of σ is described by

$$\sigma_{t+1} = \pi^{SS} \sigma_t + \pi^{US} (1 - \sigma_t),$$

(10)

where π^{SS} (π^{US}) is the probability that a skilled (unskilled) worker has a skilled offspring.
Human capital accumulation (social mobility)

We now endogenize the proportion of skilled agents, σ. The evolution of σ is described by

$$\sigma_{t+1} = \pi^{SS} \sigma_t + \pi^{US} (1 - \sigma_t),$$

(10)

where π^{SS} (π^{US}) is the probability that a skilled (unskilled) worker has a skilled offspring.

Social mobility is driven by G (e.g. public education):
Human capital accumulation (social mobility)

We now endogenize the proportion of skilled agents, σ. The evolution of σ is described by

$$\sigma_{t+1} = \pi^{SS} \sigma_t + \pi^{US} (1 - \sigma_t),$$ \hspace{1cm} (10)

where π^{SS} (π^{US}) is the probability that a skilled (unskilled) worker has a skilled offspring.

Social mobility is driven by G (e.g. public education):

$$\pi^{SS} = (1 - \zeta) \chi^{SS} + \zeta \frac{\eta G_t}{1 + G_t},$$ \hspace{1cm} (11)

and

$$\pi^{US} = (1 - \zeta) \chi^{US} + \zeta \frac{\eta G_t}{1 + G_t},$$ \hspace{1cm} (12)

where $\zeta \in (0, 1)$, $\eta \in R_+$ and $\chi^{SS} > \chi^{US}$.

Unintended consequences
The transition function

For simplicity, we restrict trade policy to a binary choice, so that $P \in \{\overline{P}, \overline{P}\}$.
The transition function

For simplicity, we restrict trade policy to a binary choice, so that $P \in \{ \overline{P}, P \}$.

The transition function for σ is given by

$$
\sigma_{t+1} = \begin{cases}
 f_1(\sigma_t) & \text{if } \sigma_t \leq \sigma' \\
 f_2(\sigma_t) & \text{if } \sigma' < \sigma_t \leq \sigma'' \\
 f_3(\sigma_t) & \text{if } \sigma_t > \sigma''
\end{cases}
$$

where $f_i(\sigma_t)$ depends on the specific political equilibrium prevailing at time t.

(13)
Example: protectionist SS

\[\sigma_{t+1} = \sigma_t \]

\[\sigma_{t+1} = f(\sigma_t) \]

Paolo Giordani

Unintended consequences
Example: free-trade SS

\[\sigma_{t+1} = \sigma_t \]

\[\sigma_{t+1} = f(\sigma_t) \]

(1) \(\sigma' \)

(2) \(\sigma'' \)

Paolo Giordani

Unintended consequences
Conclusions

We have analyzed an economy in which citizens vote on redistribution and trade openness.
Conclusions

We have analyzed an economy in which citizens vote on redistribution and trade openness. Protectionism arises endogenously as a by-product of the lower level of redistribution commanded by an ever more educated working population.
Conclusions

We have analyzed an economy in which citizens vote on redistribution and trade openness. Protectionism arises endogenously as a by-product of the lower level of redistribution commanded by an ever more educated working population. In our model, globalization breeds its decline.
Conclusions

We have analyzed an economy in which citizens vote on redistribution and trade openness. Protectionism arises endogenously as a by-product of the lower level of redistribution commanded by an ever more educated working population. In our model, globalization breeds its decline because it helps the emergence of the educated class,
We have analyzed an economy in which citizens vote on redistribution and trade openness. Protectionism arises endogenously as a by-product of the lower level of redistribution commanded by an ever more educated working population. In our model, globalization breeds its decline:

- because it helps the emergence of the educated class,
- which in turn weakens the political support for redistribution,
Conclusions

We have analyzed an economy in which citizens vote on redistribution and trade openness.

Protectionism arises endogenously as a by-product of the lower level of redistribution commanded by an ever more educated working population.

In our model, globalization breeds its decline:
- because it helps the emergence of the educated class,
- which in turn weakens the political support for redistribution,
- thus increasing the demand for protectionism.
The rise of the educated class (OECD)

Source: own elaborations on OECD data
Trade Openness and Social Expenditure (OECD)

Source: own elaborations on OECD data

Trade Openness and Welfare State

- Social Expenditure % GDP
- Trade %GDP
Globalization and redistribution (or the lack thereof)

OECD countries: trade openness and social expenditure

Source: own elaborations on OECD data
Inequality before and after redistribution (Europe Vs. US)

Source: Blanchet et al. (2019)
Inequality before and after redistribution (OECD)

Source: own elaborations on OECD data