Trade Liberalization and Inequality: a Dynamic Model with Firm and Worker Heterogeneity

Matthieu Bellon

IMF

November 30, 2016
Motivation

- The impact of international trade on inequality is a central issue
 - Empirically trade liberalization is strongly associated with rise in inequality (Goldberg and Pavcnik (2007) survey)

- What are the dynamic effects of trade liberalization on the wage distribution?
 - Literature focused on comparative steady states and comparative statics
 - By nature these approaches do not address the question

- I examine the evolution of inequality after 37 liberalization episodes
 - Gradual increase in inequality and suggestive evidence of overshooting
 - What explains the dynamics?
Project overview

- Build a model with endogenous dynamics, firm and worker heterogeneity
 - Relevant level of heterogeneity (Card et al. ('13), Helpman et al. ('12), Frias et al. ('09))
 - Combine worker screening a la Helpman et al. (ECMA ’10) and the wage posting mechanism of Kaas and Kircher (AER ’15)
 - Obtain analytical predictions for individual responses during the transition

- Show that the model mechanisms are consistent with micro-level facts
 - Estimate the magnitude of the central micro-mechanism using matched employer-employee data from France

- Numerical predictions from the calibrated model to examine aggregates
 - Qualitatively consistent with the event study: inequality overshooting
Related literature

Steady state models without transition dynamics but with
- *worker heterogeneity:*
 - Helpman, Itskhoki and Redding ('10), Caliendo and Rossi-Hansberg ('11)
- *firm growth (no worker heterogeneity):*
 - Fajgelbaum ('13), Felbermayr et al. ('14), Ritter ('14), Cosar et al. ('14), Kaas and Kircher ('15)

Transitional dynamic models with
- *no firm dynamics or homogeneous firms:*
 - Kambourov ('09), Cosar ('10), Dix-Carneiro ('10), Emami and Namini-Lopez ('12), Suverato ('13), Danziger ('14)
- *no wage dispersion:*
 - Ghironi and Melitz ('05), Atkeson and Burstein ('10), Cacciatore ('14)
- *no worker heterogeneity and limited firm dynamics:*
 - Helpman and Itskhoki ('15)
Presentation outline

1. Macro level empirical analysis
 - Event study

2. A two-sector symmetric two-country model
 - Micro-foundations: labor supply and demand
 - Steady state equilibrium properties
 - The transition equilibrium following a reduction in trade costs

3. Empirical relevance at the micro-level, calibration, and numerical results
 - Data, estimation and calibration
 - The response of aggregates to liberalization

4. Conclusion
Event study of 37 liberalization reforms (no causality)

- What happens in the data when countries open to trade?
- Liberalization dates from Wacziarg and Welch (2008)
 - relied on comprehensive survey of country case studies
- Gini time series from the micro studies collected in the World Income Inequality Database
- Follow the evolution of inequality before and after the liberalization dates
Steady increase of trade after liberalization reforms

Figure 1: Average evolution of openness (the ratio of imports and exports over GDP) before and after liberalization dates. The dotted lines correspond to 95% confidence intervals of dummy variables. Sources: WIID, WDI.

Figure 1: . Average evolution of openness (the ratio of imports and exports over GDP) before and after liberalization dates. The dotted lines correspond to 95% confidence intervals of dummy variables. Sources: WIID, WDI.
Figure 2: Average evolution of Gini coefficients before and after liberalization dates. The dotted lines are the 95% confidence intervals of year dummies. Sources: WIID, WDI.

- Run a polynomial regression controlling for country specific trends:
 - The peak is estimated to be 7 years after the liberalization
 - Statistical tests point to a significant decrease from the peak
Hump shaped evolution of inequality

Figure 2: Average evolution of Gini coefficients before and after liberalization dates. The dotted lines are the 95% confidence intervals of year dummies. Sources: WIID, WDI.

- Run a polynomial regression controlling for country specific trends:
 - The peak is estimated to be 7 years after the liberalization
 - Statistical tests point to a significant decrease from the peak
Presentation outline

1. Macro level empirical analysis
 - Event study

2. A two-sector symmetric two-country model
 - Micro-foundations: labor supply and demand
 - Steady state equilibrium properties
 - The transition equilibrium following a reduction in trade costs

3. Empirical relevance at the micro-level, calibration, and numerical results
 - Data, estimation and calibration
 - The response of aggregates to liberalization

4. Conclusion
Labor supply: the unemployed arbitrage between jobs

- Employed workers quit with exogenous probability (s_0) and can get fired
- Ex-ante identical unemployed workers apply to one vacancy type
 - service sector single-type vacancy: immediately hired at constant wage rate
 - differentiated sector vacancy of type-ω defined by 3 characteristics:
 1. wage schedules delivering a stochastic present value $V_{e,t}(\omega)$
 2. a probability μ of getting an interview is a function of the vacancy/searcher ratio
 3. a screening cutoff α_c and the associated probability $\frac{1}{\chi}$ to get the job
 * candidates get the job if a match-specific productivity draw α is above α_c

- **Arbitrage between vacancies:** high-value jobs are hard to get

⇒ A wage offer at t_0:
$$w_{t_0}(\omega) = w_0 + \frac{1}{\mu(\omega)} \frac{1}{\chi(\omega)} \frac{c_u}{c_w}$$

 - is the outside option and a premium,
 - compensates for low job-finding rate, high screening rate, and search costs

⇒ Thereafter, wages increase with screening:
$$w_t = w_0 + \beta R_{t_0,t} \frac{1}{\mu_{t_0}} \frac{1}{\chi_t} \frac{c_u}{c_w}$$
Labor supply: the unemployed arbitrage between jobs

- Employed workers quit with exogenous probability \(s_0 \) and can get fired.
- Ex-ante identical unemployed workers apply to one vacancy type:
 - Service sector single-type vacancy: immediately hired at constant wage rate.
 - Differentiated sector vacancy of type-\(\omega \) defined by 3 characteristics:
 1. Wage schedules delivering a stochastic present value \(V_{e,t}(\omega) \).
 2. A probability \(\mu \) of getting an interview is a function of the vacancy/searcher ratio.
 3. A screening cutoff \(\alpha_c \) and the associated probability \(\frac{1}{\chi} \) to get the job.
 * Candidates get the job if a match-specific productivity draw \(\alpha \) is above \(\alpha_c \).

- Arbitrage between vacancies: high-value jobs are hard to get.

\[w_{t_0}(\omega) = w_o + \frac{1}{\mu(\omega)} \frac{1}{\chi(\omega)} \frac{c_u}{c_w} \]

- A wage offer at \(t_0 \): is the outside option and a premium,
 - COMPenstates for low job-finding rate, high screening rate, and search costs.

\[w_t = w_o + \beta R_{t_0,t} \frac{1}{\mu_{t_0}} \frac{1}{\chi_t} \frac{c_u}{c_w} \]

- Thereafter, wages increase with screening.
Labor demand from heterogeneous evolving firms

- Final good sector with CES demand and monopolistic competition
 - Production function with size and average worker ability complementarity
 - Free entry and endogenous exit (+exogenous exit shocks)
 - Overlapping generations of evolving heterogeneous firms ($x \sim \text{Pareto}$)
 - Convex costs of posting vacancies, fixed and variable costs of exporting

- Firms
 - accumulate workers and wage premium commitments
 - assume a single cutoff per firm: firms screen new hires (Δ) and incumbents alike
 - assume for distressed firms in case of an unexpected bad shock (the trade liberalization reform) that: either commitments cut to restore firm profitability (profits=0) or firm exit
 - choose a number of workers l' and a screening cutoff α'_c to maximize profits subject to the labor supply equation
Optimal evolution for firms starting small with unselected workers:
- Attract more and/or better workers with more vacancies and higher wages
- **Wage demand equation:**
 \[w_t = w_o + \frac{(1-\xi)}{c_w} \frac{c_A}{\gamma} \left(\frac{\Delta}{l} \right)^{\gamma-1} \left(\frac{\alpha'_c}{\alpha_{min}} \right)^{\kappa \gamma} \] (1')
- Gradually grow to optimal size to save on convex adjustment costs
- Gradually raise screening to the optimal level
- If export, only when big enough to cover fixed costs
- Without bad shocks: no causes for downsizing, less screening or exit

In steady states, conditional on age, more productive firms:
- are relatively larger, have a higher screening cutoff, and pay better
Extending steady state canonical results

With some restrictions on parameter values, it can be shown that:

Prop. ??: Welfare is higher in steady states with trade than in autarky
 ▶ Trade implies tougher competition, a higher entry cutoff and more selection
 ▶ Higher average firm productivity and consumer gains from greater variety

Prop. ??: The dispersion of firm average wages is higher under trade when only some firms export
 ▶ Bigger, high-paying exporters screen and pay more than domestic firms

Prop. ??: Sectoral unemployment is strictly larger under trade
 ▶ Reallocation towards more productive firms that choose more screening
 ▶ More screening translates into vacancies with more rejections
Transition: exporters expand, domestic firms decline

- The transition following a once-and-for-all reduction trade costs

Special case analytical results

- Future stationary exporters (all firms with \(x \geq x_{X,\infty,\infty} \)) expand
 - Permanently raise wages because of higher new desired level of screening
 - Temporarily raise wage offers to higher levels to speed growth

- Domestic firms (\(x < x_{X,\infty,\infty} \)) grow more slowly, shrink or exit
 - Lower wages from lower growth, lower screening level, wage cuts
 - Temporary survival of some firms with \(x \) below the new steady state cutoff
 - These firms can survive for a period as they don’t need to pay hiring costs
 - Exit of the youngest (smallest) and least productive (\(x < x_{\text{exi}(a)} \))

Aggregating individual outcomes requires numerical computations.
Presentation outline

1. Macro level empirical analysis
 - Event study

2. A two-sector symmetric two-country model
 - Micro-foundations: labor supply and demand
 - Steady state equilibrium properties
 - The transition equilibrium following a reduction in trade costs

3. Empirical relevance at the micro-level, calibration, and numerical results
 - Data, estimation and calibration
 - The response of aggregates to liberalization

4. Conclusion
Calibration overview

- No analytical results for dynamic aggregate effects on inequality

- Use numerical solution from a calibrated version of the model
 - Get estimates and methods from the literature for standard parameters

- Calibrate the other parameter values to match French micro data:
 Set the labor market parameters $c_A, \frac{\kappa}{\psi}, \gamma$ to match 3 elasticities:
 - the elasticity of firm wage w.r.t firm size
 - the elasticity of the hiring rate w.r.t firm employment growth
 - the elasticity of wage offer w.r.t firm hiring rate γ
Faster growing firms have more worker separations

Figure 3: Nonparametric bi-variate regressions of hiring rates and separation rates on growth. Histogram of employment growth rate. Sources: DADS-Postes and EAE, 95-07. Rates were trimmed (2%) and deviated from year dummies.
Estimation of γ the wage elasticity w.r.t the hiring rate

- Extended wage equation:

 \[w_{i,t} - w_{o,t} = e_{i,t} \gamma \frac{c_A}{c_w\alpha^\kappa_{min}} \left(\frac{\Delta}{l} \right)^{\gamma - 1} \alpha_{j,t}^{\kappa\gamma} \]

- Regress wage offers on hiring rate while controlling for firm screening with incumbents’ wage to recover γ

- Endogeneity concern: *downward bias because of omitted variables*
 - recruiting costs $c_{A,j,t}$, labor supply shocks $e_{i,t}$ are not fully controlled for

- Instrument the hiring rate $(\Delta/l)_{t,j}$ with product demand shocks
 - restrict the sample to exporters
 - use changes in the demand of foreign partners (Hummels et al. 2014)
Faster growing firms offer wage premia

Equation:
\[\ln w_{j,t}^{\text{hires}} = (\gamma - 1) \ln (\Delta/i)_{j,t} + \delta_j + \delta_t + \beta_0 \ln w_{j,t}^{\text{incumbents}} + Z'_{j,t} \beta_1 + \epsilon_{j,t} \]

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>log hiring rate (\ln (\Delta/i)_{j,t})</td>
<td>0.019*** (0.002)</td>
<td>0.083* (0.043)</td>
<td>0.099* (0.057)</td>
<td>0.090 (0.089)</td>
</tr>
<tr>
<td>incumbents’ avg. wage</td>
<td>0.540*** (0.017)</td>
<td>0.511*** (0.028)</td>
<td>0.527*** (0.028)</td>
<td>0.498*** (0.042)</td>
</tr>
<tr>
<td>Observations</td>
<td>96588</td>
<td>96588</td>
<td>89376</td>
<td>70122</td>
</tr>
<tr>
<td>Validity tests of 1st stage:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F-test of excl.IV</td>
<td>0.0012</td>
<td>0.0092</td>
<td>0.17</td>
<td></td>
</tr>
<tr>
<td>Weak identification</td>
<td>10% max IV size</td>
<td>10% max IV size</td>
<td>20% max IV size</td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Employment-weighted firm-fixed-effect estimations of the elasticity of wage offers w.r.t firm growth. In a preliminary step, individual wages are partial-ed out from worker observable characteristics. Regressions are weighted by the number of hires. Sources: DADS-Postes and EAE. Manufacturing sector, 1995-2007.
Overshooting inequality after trade liberalization

- Consider a country under autarky that opens up to trade:
 - Trade costs decrease to a level at which 10% of firms exports, and 30% of their revenues comes from foreign sales in the future new steady state
 - Inequality peaks 3 years after and $\frac{1}{4}$ gets undone in the next 10 years
 * Wage inequality between and within firm overshoot (Frias et al. 2012)

Figure 4: Evolution of inequality in log-deviation from the autarky level. Inequality is measured by coefficient of variations. The dashed line are the future steady state values towards which the economy converges.
Presentation outline

1. Macro level empirical analysis
 - Event study

2. A two-sector symmetric two-country model
 - Micro-foundations: labor supply and demand
 - Steady state equilibrium properties
 - The transition equilibrium following a reduction in trade costs

3. Empirical relevance at the micro-level, calibration, and numerical results
 - Data, estimation and calibration
 - The response of aggregates to liberalization

4. Conclusion
Conclusion

Context
- Prior literature showed that liberalization reforms raise wage inequality
- It did not address the dynamics of inequality across firms and workers

Contributions
- Document the average evolution of inequality in a panel of 37 countries
- Build a trade model of firm and worker heterogeneity with endogenous firm dynamics
- Relate the predictions to the data and in particular to facts from French micro data

Results
- Steady state results are consistent with prior literature
- The model can explain the dynamic pattern of the macro event study
- Both suggest that a significant fraction of the inequality increase gets undone in the decade following the peak
APPENDIX