Joint Research Centre
the European Commission's in-house science service

Serving society
Stimulating innovation
Supporting legislation

RDD example

Paolo Paruolo
Centre for Research on Impact Evaluation

EC-RWC Budapest 22-24 September 2015
Caught in the trap? Welfare's disincentive and the labor supply of single men☆

Olivier Bargain⁎, Karina Doorley

Journal of Public Economics 95 (2011) 1096–1110

Contents lists available at ScienceDirect

Journal of Public Economics

journal homepage: www.elsevier.com/locate/jpube

© 2011 Elsevier B.V. All rights reserved.

Quasi-experimental methods: Regression Discontinuity Design, Example
Policy type

- Policy type: “French guaranteed minimum income” (Revenu minimum d’insertion (RMI)) introduced in 12/1988
 - Income support equivalent to a “last resort” benefit

- Intended effect: reducing poverty rates in France

- Possible side-effects of the policy
 - Underemployment with effects on welfare dependency

Quasi-experimental methods: Regression Discontinuity Design, Example
Objectives of the CIE

▶ Questions addressed
 ▶ Measuring the effect of the policy on labor supply of childless men
 ▶ Why single men? Because their labor decisions are less affected by early fertility and marriage decisions
 ▶ Testing the heterogeneity across educational levels in the labor supply response to the policy change
 ▶ Important to design optimal redistributive interventions
 ▶ The effect of the policy may be stronger for those with the lowest potential earnings

Quasi-experimental methods: Regression Discontinuity Design, Example
Design of the intervention

Eligibility

- Adults aged 25 and over, not in education or adults with underage dependants, not in education
- French residence
- Resources over the last 3 months below a threshold T

Income support

- Paid at household level
- Threshold T: function of the household size
 - Example: childless single: $T=483$ Euro in 2011
- Amount of income support: difference between household resources (including all other benefits) and T
Data employed for the analysis

Data sources

- 1999 French Census data for the main analysis
- 1982 French census data used for some robustness checks
- Information on age, employment status, type of contract, work duration, marital status, household type

Sample

- Single men, childless, aged 20-35
Estimation method: sharp RDD

Estimated equation

\[Y_i = \alpha + \rho D_i + f(S_i) + u_i \]

- **Dependent variable** \(Y_i \): dummy variable equal to 1 if the single man \(i \) is employed, 0 otherwise (unemployed job seeker or inactive)
- **Treatment variable** \(D_i \): dummy variable equal to 1 if the single man is aged 25 or above, 0 otherwise
- **Forcing variable** \(S_i \): age, one variable in \(X_i \)
- \(f(S_i) \): relationship between the forcing variable and the outcome variable

Quasi-experimental methods: Regression Discontinuity Design, Example
After the Intervention

Jump of Y_i at age 25

Quasi-experimental methods: Regression Discontinuity Design, Example CIE Training
After the Intervention

No obvious jump of Y_i at age 25
Estimation results

RMI effect: the employment rate dropped by 6.7%

Mean of the dependent variable

<table>
<thead>
<tr>
<th>Polynimiial specification for age:</th>
<th>age in: years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear</td>
<td>-0.027</td>
</tr>
<tr>
<td></td>
<td>(0.018)</td>
</tr>
<tr>
<td>Quadratic</td>
<td>-0.067 ***</td>
</tr>
<tr>
<td></td>
<td>(0.013)</td>
</tr>
</tbody>
</table>
Robustness checks: different $f(S_i)$

<table>
<thead>
<tr>
<th>Polynomial specification for age:</th>
<th>age in: years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear</td>
<td>-0.027</td>
</tr>
<tr>
<td></td>
<td>(0.018)</td>
</tr>
<tr>
<td>Quadratic</td>
<td>-0.067 ***</td>
</tr>
<tr>
<td></td>
<td>(0.013)</td>
</tr>
<tr>
<td>Cubic</td>
<td>-0.065 ***</td>
</tr>
<tr>
<td></td>
<td>(0.014)</td>
</tr>
<tr>
<td>Linear spline</td>
<td>-0.049 ***</td>
</tr>
<tr>
<td></td>
<td>(0.010)</td>
</tr>
<tr>
<td>Quadratic spline</td>
<td>-0.067 ***</td>
</tr>
<tr>
<td></td>
<td>(0.017)</td>
</tr>
</tbody>
</table>

Mean of the dependent variable

<table>
<thead>
<tr>
<th>Emp. Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.68</td>
</tr>
</tbody>
</table>
Robustness checks: falsification test

- Year 1982 - no RMI: no discontinuity in the employment rate at age 25 for single men, HS dropouts
- Single mother - RMI eligibility not based on age: no discontinuity observed at age 25 in the employment rate
Additional robustness checks

- Other policies responsible for the discontinuity in employment patterns at age 25?
- Manipulation affects?
 - Change in the proportion of men living with a partner at age 25?
 - Variation in fertility patterns below age 25?
- Authors’ findings
 - No other policy and manipulation effects can explain the discontinuity at age 25
- Implications
 - The drop in the employment rate observed for uneducated single men is caused by the RMI
Conclusion

- Feature of this impact evaluation: sharp RDD
 - Eligibility criteria based on continuous variable (age)
 - All relevant conditions are satisfied

- Findings
 - The RMI reduces the employment rate of uneducated single men at age 25
 - The RMI has no effect on the employment rate of educated single men at age 25

- Policy implications
 - Participation elasticity of single men is basically zero, except for the lowest educated group
 - Inactivity trap limited in scope
 - Youth hit very hard by the crisis
 - Should we consider an extension of this intervention to the age group 20-24?
References

Stay in touch

Paolo Paruolo
European Commission, Joint Research Centre
Centre for Research on Impact Evaluation
EC.JRC.CRIE

Home page: https://crie.jrc.ec.europa.eu/