Long-Term Growth Model (LTGM)
MTI Forum Learning Module

Presenters: Steven Pennings (DECMG, spennings@worldbank.org)
with Jorge Guzmán (DECMG, jguzman.correa@worldbank.org)
30 April 2018

www.worldbank.org/LTGM (external URL) or http://LTGM (internal FURL)

Any views expressed here are the author’s and do not necessarily represent those of the World Bank, its Executive Directors, or the countries they represent.
Model Overview

• Countries want to grow at high rates
 • What growth rates are feasible? What would it take to achieve these goals?

• A simple model to analyze long-term growth
 • Based on celebrated Solow-Swan Model: savings and investment key
 • Also TFP, human capital, demographics, labor participation, FDI & external debt

• Toolkit for use by country economists/policymakers in many countries
 • Spreadsheet-based for simplicity.
 • No macros; transparent, flexible & easy-to-learn
 • Continuously adding new features – comments always welcome

• New in LTGM v4 – implications of growth for poverty
Objectives of the Model

• Help policy makers in finding answers to 3 important policy questions:
 • Model 1: How much growth from a given investment profile?
 • Model 2: How much investment is needed to achieve a given growth profile?
 • Model 3: How much growth from a given savings profile?
 • Requires assumptions on debt or current account balance

• Allow policy makers ample flexibility
 • Scenario analysis using many other variables: Productivity, Human Capital, Demographics, External sector
 • New Extension of Growth → Poverty

• For long-run scenario analysis -- not short-run analysis or forecasting
Some examples of previous work

Used in CEMs, SCDs and other growth analysis all over the world (20+ countries):

- **Sub-Saharan Africa**: Cameroon (CEM), Zambia (SCD), Guinea (SCD), Seychelles (SCD), Ghana (SCD), Zimbabwe, Malawi, Cape Verde, South Africa
- **South Asia**: Bangladesh, Nepal (CEM), Sri Lanka (CEM)
- **Latin America & Caribbean**: Brazil, Peru, Panama, El Salvador, Guatemala, Honduras
- **East Asia & Pacific**: Philippines, Malaysia
- **Europe and Central Asia**: Georgia (SCD), Armenia (SCD), Kyrgyz Republic (SCD)
- **MENA**: Egypt (CEM)

- **Eg Cameroon CEM** – goal to boost growth to 8% become an UMI country by 2035.
 - Planned investment insufficient without higher TFP growth → reforms needed

- **Honduras, Panama, Peru, Zambia, Bangladesh** – Training for govt officials on how to use LTGM
Outline of the Rest of the Talk

Part A: Overview of the LTGM

1. Explanation of how the growth model works
 • Equations, parameters, assumptions and drivers of growth

2. Poverty and other extensions

Part B: Hands-on demonstration and tutorial

• Examples: investment -> growth, poverty, growth target, savings/debt constraints
• Simulations for your country

Comments/Questions/Suggestions
1. The Growth Model
Three Building Blocks of the Model

1. Production Function

\[Y_t(GDP) = A_t K_t^{1-\beta} (h_t L_t)\beta \]

2. Capital Accumulation

\[K_{t+1} = (1 - \delta) K_t + I_t \]

3. Demographics and Labor Market:

\[y_t^{PC}(GDP \text{ per capita}) = \frac{Y_t}{N_t} = \frac{Y_t}{L_t} \frac{L_t}{W_t} \frac{W_t}{N_t} = A_t K_t^{1-\beta} h_t^{\beta} \rho_t \omega_t \]

\(W_t \): working-age pop; \(N_t \): total population; \(\rho_t \): participation rate; \(\omega_t \): working-age-pop. to pop. ratio \(A_t \): TFP; \(K_t \): capital; \(h_t \): human capital per worker; \(L_t \): workers)
Growth Drivers

\[g_{y,t+1} \approx g_{A,t+1} + \beta (g_{h,t+1} + g_{\omega,t+1} + g_{N,t+1} + g_{\rho,t+1}) + \left[\frac{1-\beta}{K_t/Y_t} \right] \frac{I_t}{Y_t} - (1-\beta)\delta \]

- [GDP Growth] [TFP] [Human Cap] [Demographics] [Participation] MPK=1/mICOR [Investment]

- **Common policy message:** investment-led growth [by itself] is not sustainable in long run
 - ↑ K/Y reduces the effectiveness of investment over time
 - Leads to an increase in the \(mICOR_t = \frac{1}{1-\beta} \frac{K_t}{Y_t} \) (ppt increase I/Y needed for extra 1% growth)
 - Needs to be accompanied by other sources (e.g., human capital, TFP, participation)
External Sector (how to fund investment?)

1. Current Account Balance (CAB):
 \[I_t/Y_t = S_t/Y_t - CAB_t/Y_t \]

2. External Debt (we assume \(\Delta NFA_t \approx 0 \))
 \[CAB_t = \Delta NFA_t - \Delta NFL_t = -(FDI_t + (D_t - D_{t-1})) \]

 Net Foreign Assets; Net Foreign Liabilities; Foreign Direct Inv.; Change Total External Debt

 \[\Rightarrow \frac{I_t}{Y_t} = \frac{S_t}{Y_t} + \frac{FDI_t}{Y_t} + \frac{D_t}{Y_t} - \frac{D_{t-1}/Y_{t-1}}{(1 + g_{y,t}^{pc})(1 + g_{N,t})} \]

• Common policy message: need increase savings or attract FDI to fund investment plans
Saving and Investment
Average, 1980-2008

Source: Hevia & Loayza (2012)
Solving the Model - Parameters

• Can solve the model in simple spreadsheet *without macros*

• Minimal Data requirements - only need data on **three** parameters
 • Labor share (β)
 • Depreciation rate (δ)
 • Initial Capital-to-Output Ratio ($\frac{K_0}{Y_0}$)

• $\uparrow \beta$, $\uparrow \delta$ and $\uparrow \frac{K_0}{Y_0}$ all make growth harder via capital accumulation

• New in LTGM v4.1 - users can choose preloaded data source & time horizon via dropdown menu – and compare in “data summary” tab
Solving the Model - required assumptions (future)

• Needed for all models:
 • Growth rate of TFP \((g_{A,t})\); Human Capital per worker \((g_{h,t})\);
 • Demographics: Population \((g_N)\) & Working-age-pop ratio \((g_\omega)\)
 • Participation rates \((g_\rho,t)\)

• Model 1: Investment share of GDP \((l_t/Y_t)\)
 • Returns the growth rate of GDP per capita (or GDP per worker)

• Model 2: Growth rate of GDP per capita \((g_{y^{PC},t+1})\)
 • Returns the investment share of GDP

• Model 3: Savings share of GDP \((S_t/Y_t)\) and CAB/Y or Ext. Debt/Y & FDI/Y
 • Returns the growth rate of GDP per capita (or GDP per worker)
2. Poverty and other Extensions
Poverty extension (part of LTGM v4)

• 2030 Goals to eliminate extreme poverty & halve poverty (at national lines)
 • But what growth rates are required? How do current growth paths affect poverty?

• Based on Log-Normal approx. of the income distribution
 • Can analyze in Excel simply using preloaded data (no microdata required)
 • Automatically produces a Growth Elasticity of Poverty (GEP) (or users can add their own)

• Can assume constant inequality or reduced inequality (income Gini)
 • Lower inequality: (i) reduces poverty directly & (ii) increases effect of growth on poverty

• “Shared prosperity premium” where income of B40 grows faster
 • Translate this into path for Gini coefficient and examines effect on poverty rates

• Caveat: the “type” of growth doesn’t impact poverty (eg which sector grows)
How poverty extension works

• Assume a constant Gini coefficient over time.

• Growth increases everyone’s income or consumption by the same percentage
 • Shifts the log distribution to the right

• Effect on poverty varies by how many people are near the poverty line
 • Larger ppt fall in poverty when poverty rate is close to 50%
 • Varies by country, poverty line & time

• In more equal countries (lower Gini coeff)
 → more compressed distribution
 → more ppl near poverty line
 → larger effect of growth on poverty

Recent extensions

1. **Public Capital Extension** (LTGM-PC, Devadas & Pennings 2018)
 - Split total capital stock into private and public (e.g., infrastructure)
 → Effect of public inv. larger if (i) relatively scarcer (ii) essential infrastructure.
 - Allow for public capital to be of poor quality (e.g., unpaved/potholed roads)
 → New index on public investment efficiency (e.g., electricity & water losses)
 → For many LI countries, increasing efficiency can have large effect on growth

2. **TFP Extension** (Kim & Loayza 2018)
 - LTGM plug-in that maps changes in innovation, education, market efficiency, infrastructure and institutions → path for TFP growth (based on cross-country regressions)

3. **Work in Progress**
 - Natural Resource Extension – useful for commodity exporting countries.
 - Advanced Sectoral Growth Tool – looks at sectors and structural transformation
Part B: Spreadsheet Tutorial

Download LTGM v4.1 spreadsheet from www.worldbank.org/LTGM
Spreadsheet Structure

• **InputDataA_GeneralAssumptions** – Assumptions/parameters that affect all simulations (country, start year, TFP growth, K/Y, poverty etc)

• **GraphsA** plots all general assumptions in **InputDataA**.

• **InputDataB_ModelSpecAssumptions** – Assumptions for specific models
 • Model 1: Investment share of GDP → GDP Growth
 • Model 2: Growth rate → Investment share of GDP
 • Model 3: Savings share of GDP → GDP Growth

• **GraphsB** plots results of each model (and assumptions from **InputDataB**).

• Model 1/1s/2/2s/3/3s -- see the formulas here (no macros)

• **DataSummary** – overview of historical data and parameters from different sources
(i). Model 1 Investment → Growth (ASSUMPTIONS)

InputdataA: Choose general parameters
- Country=Zambia
- Initial year=2017
- Labor share (β) = 61.8%
- Depreciation rate (δ) = 4.9%
- Initial (K_0/Y_0) = 2.42
- 0.006 (0.06%) Human capital growth
- 0.01 (1%) TFP growth – initial & target

InputdataB: Model 1 specific assumptions
- 0.31 Initial investment (31% GDP)
- Baseline – no change (target=initial)
- Scenario – fall to 0.2 by 2020 (set as target)

GraphsB - check get this graph for Investment →
(i) Model 1 Investment \rightarrow Growth (RESULTS)

GraphsB - check get this graph for Growth \rightarrow

Model 1: (baseline)
- Final value in 2050 should be 2.7%
 (Look in endogenous variables)

Model 1s: (scenario)
- Final value in 2050 should be 2.5%
 (Look in endogenous variables)

- Why does growth fall in baseline & rise in the scenario (hint: look at changing K/Y & ICOR)?
(ii) Model 1 Poverty Extension

Start with Model 1 simulation in (i)

InputdataA: Choose general parameters

• Initial poverty rate at 0.644 (default)
• Poverty line of $1.9/day (PovCalNet - default)
• Set the Growth Elasticity of Poverty (GEP) on Automatic (the default)
• Initial Gini coefficient of income 0.556
 • Constant (initial= target)

GraphsB - check get this poverty →

By 2049 Results (Model 1/1s sheet bottom)

• Poverty: 30.4% (baseline) vs 38.1% (scenario)
(iii) Model 1 Poverty target with ↓ inequality

Goal: halve poverty 60% → 30% by 2030

Make sure the Gini coefficient option is chosen

Start with Model 1 simulation in (ii)
- *InputdataB* set scenario investment=0.31
- scenario= baseline (=constant 0.31)

InputdataA: parameters for poverty
- Initial poverty rate at 0.6
- Scenario Gini target of 0.42 by 2030

By 2030 Results (Model 1/1s sheet bottom)
- Poverty: 44.7% (*baseline*) vs 29.4% (*scenario*)

GraphsB - check get this graph for poverty →
(iv) Model 2: Growth Target → Investment

Start with Model 1 simulation in (iii)

InputdataA parameters for TFP growth
• Initial TFP growth of 0.01 (1% TFP growth)
• Baseline: 0.01 (1%) constant (initial = target)
• Scenario: 0.02 (2%) TFP growth target by 2020

InputdataB: Model 2 specific assumptions
• Select GDP growth target from dropdown menu
• Initial = 0.065 (6.5% GDP growth (not per capita))
• Baseline & Scenario – no change (target=initial)

GraphsB - check get this graph for investment →

By 2049: Required investment (Model 2/2s sheet)
• 58.7% (baseline) vs 21.2% (scenario)
(v). Model 3 Savings + Debt → Growth (ASSUMPTIONS)

- Start with Model 2 simulation in (iv)
- InputdataA: 1% constant TFP growth
 - Initial=Baseline=Scenario 0.01 Constant

InputdataA: External Balance (previously didn’t matter)
- FDI: initial & target 6% GDP (baseline & scenario)
- External Debt Constraint (dropdown menu)
- Initial external debt balance to 0.5 (50% GDP)
- Baseline: 0.6 external debt/GDP by 2030 (60% GDP)
- Scenario: 0.4 external debt/GDP by 2030 (40% GDP)
- Initial CAB/Y=-0.06

InputdataB: Model 3 Savings: 25% GDP constant
- Initial=Baseline=Scenario 0.25 Constant

GraphsA - check get this graph (debt red/blue only) →
(v). Model 3 Savings + Debt → Growth (RESULTS)

GraphsB - check savings is constant 25%

GraphsB - check get GDP Growth →

(Headline GDP Growth, not per capita)

By 2020: GDP Growth result (not per capita)

- 7.1% (baseline) vs 6.9% (scenario)

(Model 3/3s sheets - Memorandum items)

(Can also run a similar simulation with a change in FDI rather than a change in debt)
Other simulations to run

• Model 1: Increase female labor force participation
 • See Bangladesh growth scenario example to right

• Model 2: GDP PC growth/levels
 • Investment required to grow at 4% vs 6%?

• An increase in human capital growth.

• Manual mode: choose values year-by-year
 • Choose “Manual” from dropdown menu and enter values in yellow cells on right
 • Useful if government sets annual targets in their planning documents

• Check sensitivity to initial parameters
 • Default K/Y, labor share sometimes drive results

Increasing Female Labor Force Participation
Baseline: 34% constant; Scenario: 60% by 2030

Notes: 1% TFP; 1.3% HC. I/Y: 29% → 34% (by 2020)
(vi) Simulations for YOUR COUNTRY (Model 1)

- InputDataA: Choose your country from drop down-down menu

Set up a baseline

- Choose parameters: Labor share (β) Depreciation (δ), Initial Capital-Output Ratio ($\frac{K_0}{Y_0}$)
- Choose future assumptions: TFP Growth (A), Human Capital Growth (A), Investment/GDP (B)
- How to choose?
 - Compare data from different sources in “Data Summary” Tab (check if interpolated)
 - Choose data source (eg PWT 8.1, PWT 9) and length of average used (eg 10 yrs, 15 yrs) from drop down menus in InputDataA and InputDataB
 - Compare initial GDP or GDP Growth with trend in “Data Summary” Tab

- Set up a scenario
 - Change one thing in relative to baseline (eg increase in investment rate, increase TFP gr)
 - Choose target rate and year achieved
 - Check assumptions in baseline and scenario in Graphs A and Graphs B
Questions/comments/suggestions

• Latest version available as www.worldbank.org/LTGM (or just type “LTGM” on intranet)

• We are always trying to improve the LTGM -- comments and suggestions are welcome

• Further training to use the model (in person or via webex) is available

• Please contact us if you would like to use the model in your country: Steven Pennings (spennings@worldbank.org), Norman Loayza (nloayza@worldbank.org), or Jorge Guzmán (jguzmancorrea@worldbank.org) or LTGM@worldbank.org

• We can also provide help with analysis, in-country presentations, training govt officials etc
Input/Output: Three Versions of the Model

<table>
<thead>
<tr>
<th></th>
<th>Model 1</th>
<th>Model 2</th>
<th>Model 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purpose</td>
<td>Growth given Investment</td>
<td>Investment given Output/Growth Target</td>
<td>Investment/Growth given Savings</td>
</tr>
<tr>
<td>Inputs:</td>
<td>Investment rate (\left(\frac{I_t}{Y_t} \right))</td>
<td>Growth rate of GDP ((g_Y)) OR Growth rate of GDP per capita ((g_Y^{pc})) OR Time path of GDP ((GDP_t)) OR Poverty</td>
<td>Savings rate (\left(\frac{S_t}{Y_t} \right))</td>
</tr>
<tr>
<td>Outputs:</td>
<td>Growth rate of GDP ((g_Y)), Growth rate of GDP per capita ((g_Y^{pc})), Level of GDP ((GDP_t)), Poverty rate</td>
<td>Other three of the four measures</td>
<td>Growth rate of GDP ((g_Y)), Growth rate of GDP per capita ((g_Y^{pc})), Level of GDP ((GDP_t)), Poverty rate</td>
</tr>
<tr>
<td>Savings/Investment</td>
<td>Savings rate (\left(\frac{S_t}{Y_t} \right))</td>
<td>Investment rate (\left(\frac{I_t}{Y_t} \right)), Savings rate (\left(\frac{S_t}{Y_t} \right))</td>
<td>Investment rate (\left(\frac{I_t}{Y_t} \right))</td>
</tr>
<tr>
<td>External Sector</td>
<td>CAB to GDP (\left(\frac{CAB_t}{Y_t} \right)) OR External Debt to GDP (\left(\frac{D_t}{Y_t} \right))</td>
<td>CAB to GDP (\left(\frac{CAB_t}{Y_t} \right)) OR External Debt to GDP (\left(\frac{D_t}{Y_t} \right))</td>
<td>CAB to GDP (\left(\frac{CAB_t}{Y_t} \right)) OR External Debt to GDP (\left(\frac{D_t}{Y_t} \right))</td>
</tr>
</tbody>
</table>