Urban Networks: Connecting Markets, People, and Ideas

Edward L. Glaeser1 Giacomo A. M. Ponzetto2 Yimei Zou3

1Harvard University
2CREI, UPF, IPEG and Barcelona GSE
3UPF and Barcelona GSE

World Bank Conference
The Rise of the South at a Crossroads
A View from East Asia and Latin America

Monday 16 May 2016
Network Formation and Urban Growth

- Do megacities outperform smaller but tightly connected cities?
- What are they key determinants of their differential performance?
- A pressing question for Europe
 - We love our historical cities and are invested in their preservation
 - Are we paying for our love of history?
- A pressing question for Asia and Latin America
 - How big a megacity is too big, especially in a developing country?
 - Renewed interest in dispersion and high-speed transit
Conceptual Distinction

City: Absence of space between people

1. Perfect mobility of workers across firms
2. Integrated single pool of entrepreneurial ideas
3. Commuting to work and to man-made amenities

Network: Distinct but connected cities

1. Mobility of skilled but not unskilled workers
2. More diverse but less free-flowing ideas
3. Separate markets for housing and amenities
City Growth

Network Expansion: Add cities to the urban network
 - Greater firm creation, higher income, higher welfare
 - But we don’t model the cost of network infrastructure

Consolidation: Tighten network links to create a megacity
 - Loss of diversity: innovation may decline
 - But consumption opportunities improve

Densification: Concentrate people but lose land
 - Consolidation with scarcity
 - The elasticity of housing supply is key
Entrepreneurship

- Firm creation through recombinant growth
 - Jacobs (1969) and Weitzman (1998)
- Skilled workers \((H_{c,t}, H_r)\) and old firms \(N_{c,t-1}\) create new firms \(N_{c,t}\)
 \[
 N_{c,t} = \alpha_{c,t} N_{c,t-1}^\mu H_{c,t}^\eta H_r^\nu
 \]
 - City-specific productivity \(\alpha_{c,t}\)
 - Elasticities \(\mu, \eta\) and \(\nu\) with \(\mu + \eta + \nu > 1\)
- Localized entrepreneurial knowledge spillovers
 1. Within city \(c\) only: \(H_{c,t}^\eta\)
 2. Within the whole urban network \(r\): \(H_r^\nu\)
Endogenous Consumption Amenities

- A resident i of city c has utility

$$u_{i,c,t} = h_{i,c,t}^{\tau} q_{i,c,t}^{1-\gamma_i-\tau} (g_{i,c,t} G_{c,t})^{\gamma_i}$$

 - Consumption of housing $h_{i,c,t}^i$, numeraire $q_{i,c,t}^i$, amenities $g_{i,c,t}^i$
 - Positive spillovers in consumption: $G_{c,t}$

- Amenities are localized in space and persistent over time

$$G_{c,t} = \Gamma_{c,t} G_{c,t-1}^{1-\phi} (\bar{\gamma} Y_{c,t})^\phi$$

- Endogenous amenities are skill-biased
 - High-skill share $\gamma_H >$ low-skill share γ_L
Land Scarcity

- The source of congestion in our model
- Fixed endowment of land T_c in each city
- Endogenous investment in building up
- Equilibrium housing supply

$$h_{c,t} = \Psi_{c,t} T_c^\zeta (\tau Y_{c,t})^{1-\zeta}$$

- Productivity $\Psi_{c,t}$, income $Y_{c,t}$
- Congestion $\zeta \in (0, 1)$ ⇒ housing supply elasticity $1/\zeta - 1$
Spatial Structure

- A continuum of cities partitioned into regions $r = 1, 2, \ldots, R$
 - Region r includes measure C_r of cities
- Unskilled workers L_c are immobile
- Skilled agents H_r are mobile within each region, not across regions
- Skilled agents create firms, employ unskilled workers, produce output
 \[Y_{c,t} = \left[Y_t \left(A_{c,t} L_c \right)^{\sigma-1} N_{c,t} \right]^\frac{1}{\sigma} \]
 - Gains from specialization $\sigma > 1$ (Ethier 1982)
 - Productivity $A_{c,t}$, endogenous aggregate output Y_t
Sorting

- Skilled agents sort given \(\{ L_c, T_c; N_{c,t-1}, G_{c,t-1}; \alpha_c, t, A_c, t, \Gamma_c, t, \Psi_c, t \} \)

- Stability condition

\[
\sigma > \eta \left(1 + \phi \gamma_H - \zeta \tau \right)
\]

 - High housing share \(\tau \) and low supply elasticity \(1/\zeta - 1 \)
 - Limited spillovers in amenities \(\phi \gamma_H \) and firm creation \(\eta/\sigma \)

- Distribution within region \(r \) such that

\[
H_{c,t}^{1-\eta} \frac{1-\zeta \tau + \phi \gamma_H}{\sigma} \propto \left[\alpha_c, t N_{c,t-1}^\mu (A_c, t L_c)^{\sigma-1} \right]^{1-\zeta \tau + \phi \gamma_H} \left(\Psi_c, t T_c^\zeta \right)^\tau \left(\Gamma_c, t G_{c,t-1}^{1-\phi} \right)^{\gamma_H}
\]
Cost and Benefits of Fragmentation

- R identical regions, each comprising C_r identical cities
- Fragmentation into separate idea networks ($R \uparrow$) is harmful
 - Reduced entrepreneurship spillovers \Rightarrow slower firm creation
 - Lower incomes across the board, less (and cheaper) housing
 - Everyone’s utility falls
- Fragmentation of idea networks into separate commuting zones ($C_r \uparrow$)
 1. Reduces pecuniary variables iff $\mu + \eta > 1$
 - If $\nu > 1 - \mu - \eta > 0$ local diversity helps entrepreneurship
 2. Reduces individual i’s utility iff

\[
\gamma_i + (1 - \zeta \tau + \phi \gamma_i) \frac{\mu + \eta - 1}{\sigma - 1} > 0
\]

- Unambiguous loss of access to amenities
Cost and Benefits of Density

- Empirically, all fragmentation is probably harmful
- But technology can only go so far in eliminating distance
- Concentrating population so that $\partial \ln T = \partial \ln C_r < 0$
 1. Increases firm creation and incomes iff $\mu + \eta > 1$
 2. Increases individual i’s utility iff

$$\gamma_i - \zeta \tau + (1 - \zeta \tau + \phi \gamma_i) \frac{\mu + \eta - 1}{\sigma - 1} > 0$$

- Similar results for concentrating into networks
- Housing supply may increase if it is sufficiently elastic
Long-Run Preference Reversals

- Log-linear first-order VAR: stationary if $\mu < 1 \Rightarrow$ steady state
- If $\eta > 1 - \mu > 0$ fragmentation is more harmful in the long run
- Consolidation has larger long- than short-run income effects
- If $\gamma_i < \zeta \tau$ and $\sigma \in (\sigma^i_{d+}, \bar{\sigma}^i_{d+})$ there is a preference reversal

\[
\frac{\partial \ln u_t^i}{\partial \ln C_r} + \frac{\partial \ln u_t^i}{\partial \ln T} > 0 > \frac{\partial \ln \bar{u}^i}{\partial \ln C_r} + \frac{\partial \ln \bar{u}^i}{\partial \ln T}
\]

- Drivers of preference reversal
 1. Large local spillovers: $\partial (\bar{\sigma}^i_{d+} - \sigma^i_{d+}) / \partial \mu > \partial (\bar{\sigma}^i_{d+} - \sigma^i_{d+}) / \partial \eta > 0$
 - Accumulating income gains
 2. Highly persistent amenities: $\partial (\bar{\sigma}^i_{d-} - \sigma^i_{d-}) / \partial \phi < 0$
 - Amenities converge more slowly to their steady-state level
Distributive Conflict and Preference Reversal

- Concentration is always relatively regressive (in welfare terms)
 - The skilled care more about greater access to amenities
 - The unskilled care more about cheap housing

- Preference reversal by the unskilled increases consensus
 - In the short run, they dislike concentration because prices rise
 - But in the long run, income rises and so does housing supply
 - They come to agree with the skilled that density is good

- Preference reversal by the skilled decreases consensus
Regional Heterogeneity and Coordination Failure

- Heterogeneous regions, composed of identical cities
 - Region-specific productivities and initial endowments
- Interregional benefits of firm creation
 \[
 \frac{\partial \ln Y_{r,t}}{\partial \ln N_{s,t}} = \frac{1}{\sigma (\sigma - 1)} \frac{Y_{s,t}}{Y_t} > 0 \text{ for all } s \neq r
 \]
- Coordination failure for $\mu + \eta > 1$ and $\gamma_i < \zeta \tau$: insufficient density
- Free-riding is a temptation for small regions: $Y_{r,t} / Y_t < \hat{y}_d^i$
 - Exacerbated by a large, inelastic housing sector: $\partial \hat{y}_d^i / \partial (\zeta \tau) > 0$
 - Alleviated by large, transient amenities: $\partial \hat{y}_d^i / \partial \gamma_i < 0$, $\partial \hat{y}_d^i / \partial \phi < 0$
 - And by large local spillovers: $\partial \hat{y}_d^i / \partial \eta = \partial \hat{y}_d^i / \partial \mu < 0 < \partial \hat{y}_d^i / \partial \sigma$
- Opposite temptation if $\gamma_i > \zeta \tau$ (or $\mu + \eta < 1$): excess density
Urban Heterogeneity and Skill Poaching

- Let a finite set of identical cities collapse into one with its original land
- Feedback from land and amenities to firm creation
- The number of skilled entrepreneurs rises iff
 \[
 \gamma_H - \zeta \tau + \frac{\eta + \mu - 1}{\sigma} (1 - \zeta \tau + \phi \gamma_H) > 0
 \]
- Firm creation, output and wages rise iff
 \[
 \mu + \eta (1 - \zeta \tau + \gamma_H) > 1
 \]
 - More stringent than before iff \(\zeta \tau > \gamma_H \)
- Unskilled workers’ welfare rises iff
 \[
 \gamma_L - \zeta \tau + (1 - \zeta \tau + \phi \gamma_L) \frac{\mu + \eta (1 - \zeta \tau + \gamma_H) - 1}{\sigma - \eta (1 - \zeta \tau + \phi \gamma_H)} > 0
 \]
 - Triple cost of rising house prices
Gains from Reducing Heterogeneity

- Finite set of m cities with identical land endowments
- Heterogeneous endowment of factors $(L_c, N_{c,t-1}, G_{c,t-1})$

1. Size heterogeneity: empirical distribution of shares

$$s_k = \theta \hat{s}_k + \frac{1 - \theta}{m}$$

- Combination of a non-degenerate distribution and equal shares

2. Heterogeneous factor proportions

- Fraction ω have i.i.d. shares of each factor
- Fraction $1 - \omega$ have perfectly correlated shares of all factors

- If consolidation is attractive for (θ, ω), it is for all $\theta' \geq \theta$ and $\omega' \geq \omega$
Thinking about Urban Networks

- Key differences from a megacity
 1. More diverse but less connected entrepreneurs
 2. Less access to amenities
 3. Probably less congestion

- Focus on firm creation
 - Lower in the network if there are local increasing returns
 - Most important in the long run, undervalued in the short run

- Key role for housing supply elasticity
 - If you cannot build up you’ll hate density
 - Insufficient density from coordination failure
 - Insufficient density to attract the skilled

- Density exacerbates distributive tensions

- Hopefully a useful framing for future empirical work