Poverty in HD: What Does High-Resolution Satellite Imagery Reveal About Poverty?

Ryan Engstrom GWU Dept. of Geography rengstro@gwu.edu Jonathan Hersh Boston University Department of Economics jhersh@bu.edu David Newhouse World Bank Poverty Global Practice dnewhouse@worldbank.org

World Bank ABCDE Conference

June 20, 2016

Motivation

1

- 1. Poverty data on the poverty rates of local areas are in scarce supply
- 2. Even when countries collect poverty data, they often can't collect it in areas where it's needed most

Number of Poverty Data Points, 2002 - 2011

Number of HIES/LSMS/LSS Surveys (2002-2011)

P

Motivation

- 1. Poverty data, on the poverty rates of local areas, are in scarce supply
- 2. Even when countries collect poverty data, they often can't collect it in areas where it's needed most

One Overlooked Piece of Data: Very High Resolution Satellite Imagery

Examine potential of features derived from very high resolution satellite imagery (VHRSI) to:

- 1. Estimate poverty at local areas using only VHRSI features as explanatory variables
- 2. Extrapolate poverty estimates into areas not covered by surveys

Results Preview

- Features from VHRSI explain 40-70% of variation in small area poverty.
- Extrapolations are less precise, but we can generate fairly accurate rank order

Related Literature on Remotely Sensing Human Welfare

- Night Time Lights Henderson, Storeygard, and Weil (2012)
- **Transfer Learning -** Xie, Jean, Burke, Lobell, and Ermon (2016)
- Bayesian Geostatistical Modeling Tatem, Gething, Pezzulo, Weiss, Bhatt (2014)
- Google Street View Imagery to Predict Housing Prices - Glaeser, Kominers, Luca, Naik (2015)

Our project: First to use very high resolution imagery, use census based poverty estimates, and to measure through classification of correlates of poverty.

Why Not Just Use Night Lights?

Raw Imagery Description

- High resolution (< 0.5 m pixel)
- 3,500 sq. km in Sri Lanka
- Covering 1,250 of the 13,000 Gram Niladhari (GN) Divisions
- Match to poverty data imputed into the 2011 Census

Unit of Analysis

- Unit of Analysis: GN Division
- Average Size
 - ~ 10,000 persons
 - ~ 2.15 sq. km.
 - ~ 1/60th size US Census Tract
 - ~ 2.5 times the size of Census Block

What "features" Do We Derive From Satellite Imagery?

- Machine vision algorithms extract meaning from raw images
- Two types:
 - Identify Objects
 - Identify Texture & Spectral Characteristics

Example Identifying Objects

Features Extracted from High Resolution Imagery

Object Identified Features

- Number of Buildings
- Number of Cars
- Fraction Roads Paved
- Shadow Pixels (Building Height)
- Crop Type/Extent
- Roof Type

Texture and Spectral Features

- Vegetation Index (NDVI)
- PanTex (settlement density)
- HoG
- Local Binary Pattern Moments
- Line Support Region
- Gabor Filter
- Fourier Transform
- SURF

Technical Partners

Example Identified Object: Road Width

Example Identified Object: Roof Type

- Aluminum White/Light Grey
- Asbestos Light Brown
- Clay Tiles Dark Brown

Grey

- Painted Aluminum Blue
- Painted Aluminum Green

Example Identified Object: Cars

Example Texture/Spectral: PanTex

PanTex (Pesaresi et al. 2008)

- Detects minimum contrast in every direction
- Measures density of settlements and built-up area

Building: PanTex returns a high contrast value

Road: PanTex returns a low contrast value

Flat Surface: PanTex low contrast value

Example Texture/Spectral: PanTex

Raw Imagery

PanTex

Wanathamulla neighborhood

Variable	10% Poverty Rate		40% Poverty Rate	
variable	b	t	b	t
urban	-0.0020	[-0.19]	-0.050	[-1.25]
log GN Area	0.010*	[2.22]	0.029*	[2.02]
% of roads that are paved	-0.00033***	[-3.87]	-0.0013***	[-4.30]
% of GN area that is road	1.08	[1.03]	3.06	[0.98]
% of roads that are railroad	0.00015	[0.38]	-0.00022	[-0.18]
% of valid GN area that is built up	-0.0029*	[-2.24]	-0.011*	[-2.33]
% shadow pixels covering valid area (building height)	0.0024	[1.53]	0.012**	[2.78]
Fraction of total roofs that are clay	0.00021	[0.92]	0.00073	[1.04]
Fraction of total roofs that are aluminum	0.00074	[1.92]	0.0024*	[2.02]
Fraction of total roofs are asbestos	-0.00036	[-1.03]	-0.0015	[-1.56]
log number of roofs count	-0.012**	[-3.12]	-0.045***	[-3.89]
Total cars divided by total road length	-0.39	[-1.84]	-1.13	[-1.66]
Total cars divided by total GN Area	41.2	[0.91]	101.5	[0.66]
log number of cars	0.0018	[0.47]	0.0044	[0.43]
% of GN area that is agriculture	-0.062	[-1.18]	-0.064	[-0.30]
% of GN agriculture that is paddy	0.00050*	[2.16]	0.00032	[0.22]
% of GN agriculture that is plantation	0.00055*	[2.58]	0.00056	[0.39]
% of Total GN area that is paddy	0.000073	[0.12]	-0.00096	[-0.39]
% of Total GN area that is plantation	0.00042	[0.98]	0.0011	[0.62]
Constant	-0.021	[-0.19]	0.23	[0.53]
 Observations	1244		1244	
R Squared	0.39		0.59	

OLS Results, National Models (Object Features)

Dependent variable is log of GN Poverty Rate Defined at X% of national consumption

OLS Results, National Models (con't, Texture Features)

Variable	10% Poverty Rate		40% Poverty Rate	
variable	b	t	b	t
NDVI	0.062*	[2.01]	0.22**	[2.80]
Pantex (human settlements) mean contrast	0.022	[1.78]	0.065*	[2.25]
Histogram of oriented gradients (HOG)	-0.000016*	[-2.12]	-0.000057**	[-3.39]
Local Binary Pattern (moments) skewness	-0.00032	[-0.72]	-0.00061	[-0.47]
Line support region mean - scale 8	-0.33	[-1.27]	-0.23	[-0.31]
Gabor filter mean - scale 64	0.070	[1.60]	0.19	[1.76]
Fourier transform std. dev scale 32	0.0034	[1.60]	0.0083	[1.24]
Surf - scale 16	-0.00013	[-1.44]	-0.00036	[-1.13]
Constant	-0.021	[-0.19]	0.23	[0.53]
Obs	1244		1244	
R Squared	0.39		0.59	

Dependent variable is log of GN Poverty Rate Defined at X% of national consumption

- Robust Object ID'd predictors: develop area, number of buildings, roof type, fraction roads paved
- Robust Texture/Spectral predictors: NDVI (vegetation index), PanTex (building density), HoG (gradients/straightness) of buildings
- Separate urban and rural models show different spatial patterns of poverty in urban and rural areas
 - In urban areas: NDVI negatively correlated with poverty
 - In rural areas: NDVI positively correlated

Predicted Versus True Plots – 10% National Income

Predicted Versus True Plots – 40% National Income

Shapley Decomposition of Share of Variance Explained

	Avg. Consumption in	10% poverty	20% poverty	30% poverty	40% poverty	
	GN	rate	rate	rate	rate	
Urban	8.6	2.5	3.6	4.6	5.8	
Log of GN Area	6.7	7.9	7.7	7.5	7.3	
Road variables	11.7	12.1	12.2	11.8	11.5	
Building density						
variables	36.4	37.8	36.9	36.4	36.1	
Of which: Built-up						
area	18.6	12.8	11.7	12.4	13.3	
Log Number of roofs	8.8	9.4	10.8	10.4	10.0	
Shadow (building						
index)	5.2	3.8	4.0	4.3	4.6	
NDVI	3.8	11.8	10.4	9.3	8.3	
Roofs	9.3	7.6	7.5	7.5	7.8	
Cars	5.2	4.5	4.4	4.3	4.2	
Agricultural land						
variables	4.9	6.3	7.3	7.5	7.3	
Texture variables	17.3	21.4	20.4	20.5	20.0	
Total r ²	0.64	0.39	0.50	0.55	0.59	

Costs

- \$90,000 Total Project Costs (Big Data Innovation Challenge Grant, DEC SRP)
 - \$20,000 Imagery
 - \$20,000 Imagery Processing (orthorecification)
 - \$50,000 Processing and Deriving features
- However, business model moving towards imagery rental
 - Can analyze & extract features without paying imagery costs
 - This will scale

Conclusions

- We can explain 40-60 percent of the variation in poverty using only variables derived from high resolution satellite imagery
 - Lasso does a bit better, explaining 40-70 percent
 - Support Vector Machine (SVM) models even better
- Building density, built up area strongest predictors.
 - Vegetation index, roof type, shadow pixels (building height), and texture variables also strong predictors
- Extrapolating to out of sample areas less accurate but preserve rank

Implications

- May be possible for high res satellite indicators to substitute for census data in estimating poverty maps
- Understand better the tradeoffs of using more frequent higher variance poverty maps versus outdated but more accurate poverty maps for targeting
- Would this help adjust for non-response in surveys?

Next Steps

- Which features forecast changes in welfare?
- Cost/performance tradeoff of different features

