Developmental Psychology

Year 3 Follow-Up of the ‘Quality Preschool for Ghana’ Interventions on Child Development
Sharon Wolf

CITATION
Year 3 Follow-Up of the ‘Quality Preschool for Ghana’ Interventions on Child Development

Sharon Wolf
University of Pennsylvania

Governments around the world are increasing investments in early childhood education as a way to promote children’s learning and development. As research grows on the longer-term effects of early educational programs, some have hypothesized that sustained impacts may depend on the quality of children’s subsequent classroom environments and may be more likely to occur in certain nonacademic domains. This study is the first to examine these questions in sub-Saharan Africa, using longitudinal data from a school-randomized trial in Ghana. A 1-year teacher-training and coaching program, delivered with (TTPA) and without (TT) parental-awareness meetings, was implemented when children were enrolled in 1 of 2 grades of preprimary school. Previous studies showed that in Year 1, the implementation year, the TT treatment had positive impacts on children’s literacy, numeracy, and social-emotional development, while the TTPA treatment yielded no positive impacts for children in both grades. In this study, I examine impacts in Year 3, at the end of children’s 1st or 2nd year of primary school. I find persistent positive impacts of TT on literacy, and new negative impacts of TTPA on numeracy, but these depend on levels of classroom emotional support and teacher burnout in primary school. In addition, there were small persistent impacts of both treatments on children’s executive function, and these were not conditional on subsequent classroom environments.

Keywords: early childhood education, preschool, sub-Saharan Africa, persistence, randomized control trial

Supplemental materials: http://dx.doi.org/10.1037/dev0000843.supp

The preschool years are a period of rapid growth in cognitive, social, and emotional skills and a sensitive period for children’s educational and developmental potential (Shonkoff & Phillips, 2000). Vast inequalities exist in young children’s learning opportunities and outcomes around the world, and there is growing interest in expanding access to early childhood education (ECE) as a mechanism to reduce inequality both within (Phillips et al., 2017) and across countries (United Nations, 2015; Yoshikawa, Wuerml, Raikes, Kim, & Kabay, 2018). Governments in low- and middle-income countries (LMICs) have been increasing investments in ECE programs (Engle et al., 2011; Yoshikawa & Kabay, 2014). Yet as programs have expanded, concerns have arisen about their quality, including whether ECE services are structured to promote children’s learning and satisfy parents’ desires for education (Yoshikawa, Wuerml, Raikes, Kim, & Kabay, 2018). Thus, it remains unclear whether the expansion of ECE services in LMICs is improving children’s development and learning.

ECE programs that have more lasting effects and improve primary school learning levels will be more cost-effective compared with those for which impacts converge after exposure to the program ends. The longer-term persistence or convergence of gains from ECE has received attention in the United States (e.g., Bailey, Duncan, Odgers, & Yu, 2017; Jenkins et al., 2018), but not yet in LMICs. A recent review of randomized control trials in poor countries found that very few studies have evaluated longer-term program impacts, and the authors highlighted a need for high-quality evidence on the long-run impacts of interventions in LMICs (Bouguen, Huang, Kremer, & Miguel, 2019).

In parts of the world where children face extreme levels of risk, there is great potential for ECE to support children’s long-term development. Compared to other regions, sub-Saharan Africa (SSA) has the largest number of young children experiencing malnutrition and poverty (Black et al., 2017), as well as the largest number and proportion of children age 3 and 4 (29.4 million; 44%) failing to meet cognitive and social-emotional milestones (McCoy
et al., 2016). At the same time, compared to other regions, SSA has the lowest ECE enrollment rates, at around 18% (McCoy et al., 2017), and learning levels are extremely low for primary school students (Sandefur, 2016). On the one hand, in this context ECE could boost children’s school readiness and ultimately improve learning trajectories in primary school. On the other hand, if subsequent educational environments are poor, there may be little chance for sustained gains.

The present study examines three critical questions about ECE and global child development, using longitudinal data from a school-randomized trial in Ghana (Wolf, Aber, Behrman, & Tsinigo, 2019). First, does an intervention previously shown to improve ECE quality and produce positive short-run effects (i.e., over the implementation year and 1 year later) also show sustained gains for children in the third year, when children are in primary school? And does a second intervention engaging parents that had no positive effects also show sustained null impacts? Second, do the quality of children’s primary school classrooms and the level of primary school teachers’ burnout moderate sustained gains? This is the first study to examine how subsequent environments moderate sustained impacts of exposure to quality ECE in SSA.

Foundational Skills for Long-Term Impacts

As children’s neurodevelopmental capacity for higher-order thinking increases during the preschool years (Shonkoff & Phillips, 2000; Zelazo & Carlson, 2012), exposure to quality ECE has the potential to improve school readiness across multiple domains in ways that may lead to longer-term impacts (Snow & Van Hemel, 2008). The domain-specific skills of early literacy and numeracy are powerful predictors of later academic achievement because they form the foundation for acquiring higher-level academic skills (Duncan et al., 2007). Social-emotional (SE) and executive function (EF) skills are domain-general nonacademic constructs that have also been identified as important components of children’s school success (Durlak, Weissberg, Dymnicki, Taylor, & Schellinger, 2011; Raver, 2003). Higher-order cognitive processes such as EF help children control impulses, maintain and shift attention, and manipulate information in working memory (Blair, 2002; Miyake et al., 2000). SE skills generally include the ability to recognize and manage emotions, appreciate the perspectives of others, constructively handle interpersonal conflicts, and make responsible decisions (CASEL, 2017). Such prosocial skills can foster positive relationships, emotional competencies, and social problem-solving skills (e.g., Curby, Brown, Bassett, & Denham, 2015).

A broad body of correlational research suggests that children’s early EF skills are predictive of later academic outcomes (e.g., Bull & Lee, 2014). Correlational research on the links between early SE skills and later learning outcomes is more mixed, with numerous studies showing positive associations (e.g., Arnold, Kupersmidt, Voegler-Lee, & Marshall, 2012; Curby et al., 2015), and others showing no such links (e.g., Duncan et al., 2007). Experimental research provides additional evidence that nonacademic skills may play a key role in improving children’s learning, with several randomized control trials of SE and EF interventions showing impacts on children’s language, literacy, and math outcomes, despite the fact that these academic skills were not directly targeted (Durlak et al., 2011).

Emerging evidence also suggests that these relations are not unidirectional. Instead, it is also possible that children’s early growth in academic skills predicts their development of SE and EF skills. In a recent review, Clements, Sarama, and Germeroth (2016) posited that the development of early math skills may also translate into gains in children’s skills in EF, as learning math “exercises” children’s working memory and cognitive flexibility, both of which are central to EF. Experimental examples show that participation in a preschool math curriculum reduced behavior problems (Dobbs, Doctoroff, Fisher, & Arnold, 2006), whereas implementation of a language and mathematics curricula improved multiple dimensions of EF (Weiland & Yoshikawa, 2013). In sum, improving domains in children’s early academic skills in preschool may have longer-term effects on nonacademic skills, and vice versa.

Examining Persistence and Convergence in ECE Programs

One key motivation for examining sustained effects of quality ECE stems from a few prominent studies in the United States showing strikingly positive impacts in adulthood and large benefit-cost ratios of small-scale but intensive interventions, including the Perry Preschool (e.g., Heckman, Moon, Pinto, Savelyev, & Yavitz, 2010) and Abecedarian studies (e.g., Campbell et al., 2012). The broader experimental literature analyzing longer-term impacts of ECE in high-income countries has shown mixed results for persistent impacts in the years following interventions. Some studies document small, continued benefits into middle childhood and even adolescence (Ansari, 2018; Dodge, Bai, Ladd, & Muschkin, 2017; Gormley, Phillips, & Anderson, 2018; Vandell, Burchinal, & Pierce, 2016), and others find no detectable effects shortly after kindergarten (Hill, Gormley, & Adelstein, 2015; Magnuson, Ruhm, & Waldfogel, 2007; Puma et al., 2012). In a recent meta-analysis, McCoy and colleagues (2017) found strong support for sustained gains on educational outcomes into adolescence, including reductions in grade retention and increases in high school graduation rates. Some studies suggest that ECE may have long-term benefits into adulthood by improving children’s nonacademic skills, such as self-regulation and executive function (e.g., Blair & Raver, 2014; Diamond, Barnett, Thomas, & Munro, 2007). Taken together, the findings suggest that the potential benefits of high-quality ECE may be improved social and executive function skills in the short-term that may translate into improved academic outcomes in the longer term.

Sustaining Environments

There is some evidence that children’s subsequent classroom and school contexts matter for whether gains from preschool last into elementary school, what some have called “sustaining environments” (Bailey et al., 2017). There are limited studies testing this hypothesis, and variation in both methodological designs and operationalization of subsequent educational quality makes it difficult to draw conclusions across the studies. For example, evidence that sustained gains are larger in higher quality subsequent school and classroom contexts has been found for school spending (Johnson, 2013), teacher value-added (Swain, Springer, & Hofer, 2015), school-level standardized test scores (Currie & Thomas,
effectively in the classroom, burnout may impact interactions with colleagues (Skaalvik & Skaalvik, 2010), and a recent study found negative, cynical attitudes and feelings about one’s students or burnout (Maslach, Jackson, & Leiter, 1996). Burnout can lead to emotional exhaustion—including the depletion of oneself at a psychological level—is the central element of burnout (Hamre et al., 2002). Emotional exhaustion—which is highly correlated with classroom process quality (e.g., social and relational processes as the driver of child development and learning (Howes, James, & Ritchie, 2003; Pianta et al., 2005). There are three critical domains of process quality: instructional support, emotional support, and classroom organization, with instructional and emotional support shown to be most strongly predictive of child development (Hamre et al., 2013). While elements of process quality have been examined in studies testing the sustaining environments hypothesis (e.g., Ansari & Pianta, 2018), these specific domains have not been directly tested. It is possible that the inconsistencies found in the literature are related to differential correlations between the indicators used and children’s daily experiences in the classroom with their teachers (Pianta et al., 2005). Some indicators may be more highly correlated with classroom process quality (e.g., social and relational processes) than others (e.g., full- vs. half-day kindergarten).

Also yet to be considered as a feature of sustaining environments is teachers’ professional well-being, despite widespread recognition that in many countries, teachers face severe professional challenges that can lead to stress and burnout. In LMICs in particular, there is concern that teachers are increasingly demotivated and burned out, which may partially explain deteriorating teaching performance and student learning outcomes, high rates of turnover and absenteeism, and misconduct (Bennell & Akyeampong, 2007; Moon, 2007). Burnout may be due to education reforms in the 1990s that led to a rapid rise in the number of children enrolled in school, increasing class sizes and teachers’ workloads without sufficient support (Volunteer Services Organization, 2002). Emotional exhaustion—including the depletion of emotional resources and a feeling of no longer being able to give of oneself at a psychological level—is the central element of burnout (Maslach, Jackson, & Leiter, 1996). Burnout can lead to negative, cynical attitudes and feelings about one’s students or colleagues (Skaalvik & Skaalvik, 2010), and a recent study found it to be directly associated with lower student achievement (McLean & McDonald Connor, 2015). Even if teachers teach effectively in the classroom, burnout may impact interactions with students throughout the day, including outside of instructional time, ultimately affecting how students engage in the classroom. Many have argued that teacher professional well-being generally, and burnout particularly, is an important dimension of the classroom context worthy of investigation in and of itself (e.g., Lee & Wolf, 2019; Wolf, Torrente, McCoy, Rasheed, & Aber, 2015).

Evaluations of ECE in Low- and Middle-Income Countries

Over the past 15 years, there has been a rapid expansion of ECE services around the world (UNESCO, 2015). However, enrollment and quality of services have been generally lower in LMICs (Neuman, Josephson, & Chua, 2015). Studies in LMICs have mostly focused on short-run impacts, typically within a year of program initiation. In Chile, Yoshikawa and colleagues (2015) found that although a teacher workshop and coaching intervention had positive impacts on classroom quality, it did not translate into gains for child development outcomes over two school years of implementation. Araujo, Carneiro, Cruz-Aguayo, and Schady (2016) randomly assigned Ecuadorian children to kindergarten teachers across 204 schools. A one-standard-deviation increment in classroom quality (total CLASS scores) predicted increases in children’s language, math, and executive function of 0.11, 0.11, and 0.07 standard deviations, respectively, over one school year. In Bangladesh, children exposed to a high-quality preschool program outperformed a control group in verbal and nonverbal reasoning (Aboud, 2006).

A few studies have examined longer-term outcomes. In Argentina, access to 1 year of preprimary school increased third grade language and mathematics scores by 0.23 standard deviations and had positive effects on self-control (Berlinski, Galiani, & Gertler, 2009). In Mozambique, in comparison to a control group, children at a rural preschool were 24% more likely to enroll in primary school and showed improved cognitive abilities, fine-motor skills, and behavioral outcomes (Martinez, Naudeau, & Pereira, 2012). Finally, a recent experimental study in Malawi found that a 1-year teacher-training program delivered with a parenting-skills intervention improved children’s language skills and prosocial behaviors by 0.2 to 0.3 standard deviations at an 18-month follow-up, but there were no detectable impacts at the 36-month follow-up (Özler et al., 2018). Taken together, the limited evidence suggests that across diverse LMIC contexts, similar to evidence from the United States, quality preprimary education has short-term impacts on child development across a broad set of outcomes, with mixed evidence on longer-term impacts.

The Quality Preschool for Ghana (QP4G) Programs

The Republic of Ghana is a unique context to study issues of early childhood education. In 2007, two years of preprimary education—called Kindergarten 1 (KG1; equivalent to pre-K in the United States) and Kindergarten 2 (KG2; equivalent to U.S. kindergarten), respectively—were added to the universal basic education system that had previously begun in primary grade 1. Ghana has among the highest net enrollment rates in Africa (UNESCO, 2015), with 75% of 4- and 5-year-olds enrolled in preprimary education (Ghana Ministry of Education, 2016). But several reports have concluded that classroom quality and learning outcomes...
are low (e.g., Ghana Ministry of Education, 2014), including in kindergarten (Ghana Education Service, 2012). A 2012 government kindergarten Situational Report concluded that the curriculum established in 2004 was sound but that teachers had not been systematically trained to deliver it (Ghana Education Service, 2012). The QP4G project aimed to train teachers on the 2004 KG curriculum to enhance the quality of KG education and children’s developmental outcomes and to test the added benefits of engaging parents through an awareness campaign designed to align expectations with the KG curriculum and pedagogy. *Early childhood education and preschool* in this study refer to the 2 years of preprimary education in Ghana called *kindergarten*.

### The Programs

There were two components of the QP4G interventions, which are described in detail elsewhere (Wolf, Aber, Behrman, & Peele, 2019). The primary component targeted teachers through in-service training and coaching. The training workshops (5 days in September, 2 days in January, 1 day in May) were led by professional teacher trainers at the National Nursery Teacher Training Center (NNTTC) in Accra, and in-classroom coaching (six visits over the school year) was administered by trained district-government ECE coordinators. The coaching model has a strong evidence base in both the United States (Kraft, Blazar, & Hogan, 2018) and LMICs (Ganimian & Murnane, 2016).

The second component targeted parents, with the goal of aligning expectations for ECE with the new methods taught in the training and encouraging communication between parents and teachers. The program consisted of three parental-awareness meetings, which were administered through school Parent–Teacher Associations (PTAs) over the school year. They were offered to all parents with kindergarten children in the school and administered by the same trained district-government ECE coordinators. Each meeting consisted of viewing videos developed for the intervention followed by discussions led by district coordinators. The video themes were (a) the importance of play-based learning, (b) parents’ role in children’s learning, and (c) encouraging parent–teacher and parent–school communication.

### Mechanisms of Change

Treatment schools received the teacher-training and coaching program (TT) or the teacher-training and coaching program plus the parental-awareness meetings (TTPA). The broad theory of change was that children’s school readiness would be enhanced through improved classroom quality (measured through teacher–child interactions) and improved teacher professional well-being (measured through teachers’ motivation, burnout, and job satisfaction). For schools that received both teacher-training and parental-awareness meetings (TTPA), it was anticipated that this combined package would improve parents’ understanding of play-based learning, strengthen parent–teacher communication, and increase parental involvement and engagement with teachers, and consequently have larger impacts on child outcomes.

The most proximal target of change was the classroom, with improvements that could support children’s development of foundational skills. The content focused on integrating play- and activity-based, child-centered teaching practices into instructional content. The first target was to transform classroom instruction from rote memorization of academic concepts to an activity-based approach that engages students in developing critical thinking skills. The second was to reduce harsh and corporal punishment while improving positive behavior management in the classroom. The goal was to enhance pathways for learning by increasing emotional support and proactive behavior management to help children learn to self-regulate and develop executive function and social-emotional skills (e.g., Diamond et al., 2007).

It is important to note that perceived goals of education likely affect how teachers shape their classrooms and how they respond to parents’ preferences in ways that could also affect sustained gains. Many Ghanaian parents’ value early education and demand academically focused, rigorous instruction from teachers (Bidwell, Parry, & Watine, 2014; Kabay, Wolf, & Yoshikawa, 2017). Increasing parent participation and engagement in education without changing parent preferences may lead these demands to more strongly influence teachers. As parents’ engagement in school increases, they may also begin to feel more efficacious and take a more active role in home learning activities that could have longer-term impacts on children. Virtually no research has examined these issues.

### Previous Findings

Two studies have reported on earlier impacts of the QP4G programs. The initial study tested the effectiveness of the programs, guided by the theory of change, to improve (a) teacher professional well-being, (b) classroom quality, and (c) children’s developmental skills over one school year (Wolf, Aber, Behrman, & Tsing, 2019). There were reductions in teacher burnout in TT ($d_{wt} = .40$) and TTPA ($d_{wt} = .59$) as well as a 58% drop in the odds of teacher turnover. Regarding classroom quality, QP4G increased the number of developmentally appropriate activities teachers used in classrooms in both treatment conditions by similar magnitudes ($d_{wt} = .56$ in TT, .61 in TTPA). Both treatment conditions increased levels of emotional support and positive behavior management observed in the classroom ($d_{wt} = .65$ in TT, .66 in TTPA), and TT (but not TTPA) increased levels of supporting student expression ($d_{wt} = .52$). Thus, the programs did improve several dimensions of ECE quality.

Children in schools assigned to the TT condition had improved outcomes in three of the four domains examined: early numeracy ($d_{wt} = .11$), early literacy ($d_{wt} = .11$), and social-emotional skills ($d_{wt} = .18$) in the first year. There were no impacts on executive function. There were no significant impacts of TTPA on children’s outcomes. Compared to TT, children in TTPA had lower scores on domains of early literacy and numeracy, suggesting counteracting effects of the parental-awareness meetings. A second follow-up study (Wolf, Aber, Behrman, & Peele, 2019) found that a year later, in Year 2, impacts of TT were sustained only for social-emotional skills ($d_{wt} = .13$).

### The Current Study

The current study builds the evidence-base of persistence and convergence of ECE programs by examining the issues for the first time in sub-Saharan Africa. The study extends previous findings on the QP4G programs in several ways. First, it provides evidence
on long-term impacts of the interventions for one additional year when children were in Primary 1 (equivalent of first grade) and Primary 2 (equivalent of second grade) classes. It also considers whether the parental-awareness treatment of the QP4G programs, which was found to counteract the positive effects of the teacher-training on child outcomes, has persistent null effects. Second, outcomes cover domains of academic, social-emotional, and executive function skills, all foundational for longer-term school success, and multiple sources are used to measure children’s outcomes. Third, this study examines contextual moderators of children’s primary school classroom environments, including indicators of classroom process quality, extending evidence from U.S.-based research on the sustaining environments that support early intervention gains (Bailey et al., 2017). Fourth, this study extends conceptualizations of sustaining environments by examining teacher burnout as a relevant indicator of subsequent educational contexts. The results have practical implications for the potential cascading effects of investing in preprimary education in countries with limited resources and with extremely low primary education outcomes.

**Method**

The QP4G interventions were implemented between September 2015 and June 2016. Schools were randomly assigned to one of three treatment arms noted above: (a) TT, 82 schools; (b) TTPA, 79 schools; and (c) control, 79 schools. The school year in Ghana begins in September and ends in July. Data was collected in September–October 2015 (baseline), May–June 2016 (follow-up 1), May–June 2017 (follow-up 2), and May–June 2018 (follow-up 3). The present study used data collected at baseline and follow-up 3.

Randomization of schools was stratified by district and public and private sector. Six of the nine most disadvantaged districts (out of 16 districts total) in the Greater Accra Region were selected. The selected districts were rated as the most disadvantaged in the region based on the 2014 UNICEF District League Table (a social accountability index that ranks regions and districts based on development and delivery of key basic services, including education, health, sanitation, and governance; UNICEF, 2015). This trial was preregistered in the American Economic Association registry for randomized controlled trials (RCT ID: AEARCTR-0000704).


**Sampling and Data Collection Procedure**

Schools were sampled from all six study districts in the summer of 2015. A listing of all schools was conducted using the Ghana Education Service Educational Management Information System database. Schools were then randomly sampled, stratified by district and within district by public and private schools. Because there were fewer than 120 public schools across the six districts, every public school was sampled. Private schools (490 total) were sampled within districts in proportion to the total number of private schools in each district.

A subsample of children from each KG class was sampled within each school. Class rosters for all KG classrooms were collected, and an average of 15 children (eight from KG1 and seven from KG2) were randomly selected from each roster to participate in direct assessments. If a school had fewer than 15 children enrolled across both classrooms, all children were selected. For schools with only one KG classroom, 15 children were sampled. At baseline, the total sample of children was 3,435 children, with an average of 14.3 children per school (range = 4–15). Children (49.5% female) were, on average, 5.2 years old at baseline ($SD = 1.2$; For KG1, $M = 4.8$, $SD = 1.1$; and for KG2, $M = 5.7$, $SD = 1.2$). These children were followed at each subsequent wave of data collection. In Year 3 ($N = 2,421$), children were on average 7.8 years old.

In Year 3, the primary school teachers and classrooms of children were also sampled. Data were collected on teachers through administered surveys and classrooms through direct observation. These were new teachers who were not part of the original impact evaluation. Importantly, a large portion of the original sample (29.5%) could not be found at the third follow-up. Mobility and school dropout are common challenges to the school system in Ghana and many other LMICs (Kamanda & Sankoh, 2015). The handling of missing data for this study is detailed below, and the results need to be interpreted in light of the large portion of missing data.

**Measures**

**Child outcomes.** Child outcomes were collected through direct assessments with trained multilingual assessors, teacher reports, and assessor reports. All assessors had experience working with children, received five days of training, and participated in two days of field practice. The assessment tool was translated into three local languages (Twi, Ewe, and Ga). Details of the adaptation of assessments to the Ghanaian context are provided in the online supplementary materials. Table 1 provides descriptive statistics for all child outcome variables.

**Academic skills.** Literacy skills were measured across five domains of literacy, and preliteracy skills were measured primarily with the Early Grade Reading Assessment (R. T. I. International, 2009a). Domains included expressive vocabulary, listening comprehension (in both English and the child’s mother tongue), letter-sound identification, and nonword decoding. A measure of phonological awareness from the International Development and Early Learning Assessment (IDELA; Pisanı, Borısova, & Dowd, 2018) was also included. The percent correct for each domain was computed, and the score for each domain averaged to create a total score ($M = 0.524$, $SD = 0.177$, $range = 0–0.932$, $\alpha = .76$).

Numeracy skills were measured across five domains of numeracy and prenumery skills using the Early Grade Math Assessment (R. T. I. International, 2009b). Domains included number identification, quantity discrimination, addition, subtraction, word problems, and missing number pattern identification. The percent correct for each domain was computed, and the score for each domain was averaged ($M = 0.470$, $SD = 0.172$, $range = 0–0.925$, $\alpha = .87$).

**Social-emotional skills.** Using the IDELA subscale (Pisanı et al., 2018), prosocial skills were measured using 14 items grouped into five constructs: self-awareness, emotion identification, perspective taking and empathy, friendship, and conflict and problem solving. An example item of conflict solving involved asking
Table 1

Mean, SD, and Inter-Item Correlations of Dependent Variables

<table>
<thead>
<tr>
<th>Outcome</th>
<th>M</th>
<th>SD</th>
<th>Range</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Literacy</td>
<td>.524</td>
<td>.177</td>
<td>.00–.93</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Numeracy</td>
<td>.470</td>
<td>.172</td>
<td>.00–.92</td>
<td>.71</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Prosocial</td>
<td>.660</td>
<td>.148</td>
<td>.00–1.00</td>
<td>.39</td>
<td>.39</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Social competence</td>
<td>.692</td>
<td>.138</td>
<td>.00–1.00</td>
<td>.27</td>
<td>.25</td>
<td>.11</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Cognitive flexibility</td>
<td>.548</td>
<td>.173</td>
<td>.00–1.00</td>
<td>.25</td>
<td>.27</td>
<td>.24</td>
<td>.10</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>6. Inhibitory control</td>
<td>.930</td>
<td>.139</td>
<td>.27–1.00</td>
<td>.29</td>
<td>.34</td>
<td>.22</td>
<td>.10</td>
<td>.19</td>
<td>1.00</td>
</tr>
<tr>
<td>7. Behavioral regulation</td>
<td>.923</td>
<td>.090</td>
<td>.20–1.00</td>
<td>.42</td>
<td>.44</td>
<td>.36</td>
<td>.16</td>
<td>.17</td>
<td>.20</td>
</tr>
</tbody>
</table>

Note. All variables were rescaled from their original scale to 0–1 and represent the percentage of correct answers in each domain. All correlations statistically significant at p < .001.

children to imagine they are playing with a toy and that another child wants to play with the same toy, and then asking the children what they would do to resolve that conflict. “Correct” answers in the Ghanaian context, as agreed upon by the assessors during training, included talking to the child, taking turns, sharing, and getting another toy. The proportion correct for each domain was computed, and scores for each domain were averaged to create a total score ($M = 0.662, SD = 0.140, range = 0–1, \alpha = .67$).

Social competence was measured using The Social Competence Scale–Teacher Version (Conduct Problems Prevention Research Group, 1990), a 25-item measure that assesses a child’s social behaviors (e.g., “cooperates with peers without prompting,” “is helpful to others”), emotional self-regulation (e.g., “can accept things not going his or her way,” “can wait patiently when necessary”), and academic-related behavioral skills (e.g., “functions well even with distractions,” “stays on task”). The tool was pilot tested with Ghanaian teachers and found to be suitable for use with very minor adaptations (e.g., adding a brief explanation of some phrases). Items were scored on a scale where $1 = not at all, 2 = a little, 3 = moderately well, 4 = well, and 5 = very well.$ All items were averaged to create a total score and then rescaled from 0 to 1 ($M = 0.692, SD = 0.138, range = 0.20–1; \alpha = .93$).

Executive function skills. Cognitive flexibility was assessed using an adapted version of the Dimensional Change Card Sort (DCCS)–Border version (Zelazo, 2006; 12 items, $\alpha = .78$). The DCCS is a standard procedure for assessing executive functioning early in development; in the more challenging border version used in this study, children need to follow different sets of sorting rules based on whether the card has a border. In the task, participants switch from sorting cards one way (e.g., by color) to sorting them a different way (e.g., by shape). Inhibitory control was measured using the Number Stroop Task (21 items, $\alpha = .96$). In this task, children are shown a set of boxes with one to four repeating numbers (e.g., 1111, 44; and are asked to report how many numbers are in each box; see Obradović et al. [2019] for details on the adapted measures). Scores within each domain were averaged to create a total percent correct score ($M = 0.545, SD = 0.173, range = 0.00–1.00$ for cognitive flexibility; $M = 0.930, SD = 0.139, range = 0.27–1.00$ for inhibitory control).

Finally, behavioral regulation was measured using an adapted version of the Preschool Self-Regulation Assessment–Assessor Report (PSRA-AS; Smith-Donald, Raver, Hayes, & Richardson, 2007). PSRA-AR was designed to assess self-regulation of emotion, attention, and behavior of children during direct assessments. The instrument was shortened and adapted for the Zambian context (McCoy, Zuilkowski, & Fink, 2015) and used in other LMIC samples (Kim, Brown, Tubbs Dolan, Sheridan, & Aber, 2018). The shortened version consisted of 13 items focused on the child’s attention and behavior. Sample items include “pays attention during instructions and demonstrations,” “remains in seat appropriately during test,” and “modulates and regulates arousal level in self.” Items were scored on a 1 to 4 scale and coded such that higher scores indicated better behavioral regulation. Total scores were rescaled to 0 to 1 ($M = 0.779, SD = 0.062, range = 0.429–0.944; \alpha = .88$).

Classroom quality. Children’s primary school classrooms ($N = 841$ out of 911 total, or 92.3%) were videotaped during a lesson for 30–60 min. Videos were coded using the Teacher Instructional Practices and Processes System-Primary School Version (TIPPS; Seidman, Kim, Raza, Ishihara, & Halpin, 2018), with minor adaptations for use in Ghana (e.g., referring to pupils as children, as is common in Ghanaian kindergarten settings). The TIPPS is a classroom observation tool for assessing classroom quality that focuses on the nature of teacher–child interactions; it was created for use in LMICs. The TIPPS is made up of 19 items and was validated for the Ghanaian context in a previous study (Wolf et al., 2018). All raters were Ghanaian nationals and had at least a bachelor’s degree. After completing a training, each rater had to meet or exceed calibration criteria within three attempts to be certified as a TIPPS observer (see Wolf et al. [2018] for further details). To assess interrater reliability, 15% of videos were coded by two additional raters (three total). The intraclass correlation coefficient (ICC) of the final scores was calculated to assess how the partition of variance in scores broke down into differences in individual raters and how much variance was shared across raters. On average across items, 70.9% of the variance was shared across raters, denoting acceptable interrater reliability.

A factor analysis was conducted to examine underlying dimensions of quality. The dataset was randomly split into an exploratory ($N = 419$) and confirmatory ($N = 422$) sample. The purpose of the exploratory sample was to allow for multiple variations of the 18 items on initial models to be fitted in order to arrive at a proposed model. The purpose of the confirmatory sample was to ensure that the proposed model demonstrated out-of-sample generalizability. Analyses were conducted using MPlus V6.12. One item was dropped due to lack of variation (i.e., “teacher shows favoritism to some students over others.”) Factor solutions were examined for the remaining 17 items ranging from one to four factors in the exploratory analysis using varimax rotation. In selecting a model, I considered (a) goodness-of-fit statistics and (b) conceptual mean-
ing of the factors. The selected model from the exploratory analysis was a two-factor model, which had adequate goodness-of-fit statistics in the confirmatory sample ($\chi^2(89) = 256.03$, CFI = .94, TLI = .93, RMSEA = .067).

The two factors were instructional support (8 items; e.g., students’ ideas and interests considered in lesson, shows relevance of lesson, specific quality feedback; $\alpha = .76$) and emotional support (7 items; e.g., positive environment, tone of voice, effective behavior management; $\alpha = .81$). The scores for each scale were computed through an average of the items and were normally distributed ($M = 1.96$, $SD = 0.44$, range = 1–3.50; and $M = 3.34$, $SD = 0.46$, range = 1.71–4, respectively) and positively correlated (r = .16). The intraclass correlations (ICC) of instructional support and emotional support across schools were 0.296 and 0.131, respectively.

Teacher burnout. Teachers of children’s primary classrooms ($N = 879$ out of 911 total, or 96.5%) were administered a survey in English (the language of Ghana’s education system) and answered items from the Maslach Burnout Inventory (MBI; Maslach et al., 1996). The nine items were from the Emotional Exhaustion subscale and were normally distributed. Teachers answered each item on a scale from 0 (“never”) to 6 (“every day”) to indicate, for instance, how often they felt “Frustrated,” “Burned out,” “Stressed,” and “Emotionally drained” ($M = 1.65$, $SD = 1.14$, range = 0–5.8, $\alpha = .78$). A previous study assessing the factor structure of the MBI with teachers in Ghana has shown that the items hold as a single factor, and that this factor has high concurrent validity with teachers’ job demands and job resources (Lee & Wolf, 2019). The ICC for burnout was 0.128. It was not correlated with either dimension of classroom quality (r = .04 with instructional support, r = −.01 with emotional support).

Covariates. Covariates were included to improve the precision of the estimates and were drawn from the baseline data: private-sector status of the school, six district dummies, child sex, baseline age in years, and KG level at baseline (1 = KG1, 2 = KG2, or 3 = combined classroom). Baseline scores, measured using the IDELA (Pisani et al., 2018), were available for all domains (i.e., literacy, numeracy, social-emotional, and executive function). Scores were standardized and included in the respective models.

**Analytic Plan**

Baseline equivalence and attrition analysis. A baseline equivalency analysis was conducted in an earlier study to confirm whether the randomization was successful in yielding statistically equivalent treatment and control groups (Wolf, Aber, Behrman, & Tsiniring, 2019). Given attrition in the sample over the 3 years of the study, I conducted a differential attrition analysis for the three treatment groups. Nearly 30% (1,014) of children from baseline were not in the follow-up 3 sample (34.5% of control; 29.3% of TT, and 30.5% of TTPA). Treatment status significantly predicted attrition; children in both treatment groups were more likely to be in the sample compared to the control group (TT, $\chi^2(1) = 7.92$, $p < .01$; TTPA, $\chi^2(1) = 4.80$, $p < .05$).

Standards developed by the What Works Clearinghouse (WWC, 2017), established by the U.S. Department of Education’s Institute of Education Sciences, classify evaluation studies as having either “high” or “low” attrition based on a combination of overall and differential attrition. The WWC standards also account for an important trade-off between overall and differential attrition—namely, that a study can have a higher overall rate of attrition if it has a low rate of differential attrition. In this case, the combination of overall attrition at 29.5%, and differential attrition of 5.2% in TT, and 4.1% in TTPA, categorize this in the range of low attrition using the conservative attrition standard (WWC, 2017). Some data were also missing on classroom contexts (7.7%) and teacher professional well-being (3.5%) due to teacher absence or refusal.

**Missing data imputation.** Following the WWC Version 4.0 Standards Handbook (IES, 2017), I used multiple imputation to address missing data for all missing cases, including dependent variables and treatment status, using four rounds of data collection (baseline and all three follow-ups). While the data were not missing completely at random (MCAR), if variables that strongly predict attrition are incorporated into the missing data strategy, the plausibility of the missing-at-random (MAR) assumption increases (Young & Johnson, 2015). In other words, by using a large set of covariates in estimating multiple chains of models, including those that predict differential attrition, assumptions of MAR have been shown to be robust. Impact estimates were computed using 100 imputed data sets.

**Impact analysis.** Multiple observations arising from the same sampling unit (in this case, schools and classrooms) will have model residuals that are correlated. Multilevel models (also known as random effects models) provide flexible and advantageous strategies for modeling such dependencies. To account for the nested, nonindependent nature of the data when children were sampled at baseline from schools and classrooms, I employed three-level models to estimate impacts on child development outcomes. Impact analyses included a select set of covariates. Children were nested in the classrooms and schools from which they were sampled. The multiply imputed data sets were analyzed using Rubin’s combining rules to compute pooled coefficients and standard errors across data sets (Rubin, 1987). I estimated treatment impacts on each outcome using the following equation:

**Level 1 (Child-level Model):**

\[
Y_{ijk} = B_{0jk} + B_{1jk}X_{ijk} + e_{ijk}
\]

where $X_{ijk}$ is the vector of child covariates (gender, age, and baseline score).

**Level 2 (Classroom-level Model):**

\[
B_{0jk} = \gamma_{00k} + u_{0jk}
\]

where $B_{0jk}$ is the classroom-level random intercept.

**Level 3 (School-level Model):**

\[
\gamma_{00k} = \pi_{000} + \pi_{001}T + \pi_{002}TP + \pi_{003}Z + \nu_{00k}
\]

where $\gamma_{00k}$ is the school-level random intercept; $Z_{ik}$ is the vector of school-level covariates (district dummies, private or public, and

---

1 Imputation was conducted in two steps. First, 20 teacher-level datasets were imputed using a rich set of teacher demographic and background variables, outcome scores for professional well-being and classroom quality across all four waves, and treatment status indicators. Second, 10 of these teacher datasets were randomly sampled. Each individual dataset was merged with the child outcomes data, caregiver data, and basic child demographic characteristics from all waves of data. For each of the 10 teacher datasets, 10 child datasets were imputed, resulting in 100 child-level datasets.
four dummy variables for different school-mobility scenarios); and TT and TTPA are indicators for schools assigned to the two treatment arms.

Next, I examined whether sustained intervention impacts were moderated by three dimensions of children’s primary classroom context by adding cross-level interaction terms between each treatment condition and the primary classroom variable. On average, there were 2.7 children per primary school classroom (range = 1–16). Given the sampling strategy used in the initial project and in previous studies (Wolf, Aber, Behrman, & Peele, 2019; Wolf, Aber, Behrman, & Tsinigo, 2019), for the analysis I nested children in the preprimary schools and classrooms from which they were sampled. Thus, the primary school classroom/teacher variables are modeled at the child level.

**Results**

The ICCs for children’s outcomes based on children’s primary schools and classrooms are displayed Table 2. For academic outcomes, a larger proportion of variance is attributed to the school and classroom-levels than for the nonacademic outcomes. For literacy, for example, 23.5% of the variance is explained by the preprimary school level, 12.2% by the preprimary class level, and 64.4% by the child level. In contrast, for social-emotional outcomes, 8.8% of the variance is explained by the preprimary school level, 6.0% by the preprimary grade level, and 85.2% by the child level.

**Persistent Impacts of QP4G on Child Development**

Table 3 presents impact estimates of QP4G on children’s developmental outcomes 2 years after the end of the program, with each row representing the average effect for each treatment condition relative to the control group. For academic outcomes, there were marginally statistically significant persistent impacts of TT on children’s literacy ($b = 0.019, SE = 0.010, p < .06, d_{wt}^2 = .11$). There were statistically significant persistent negative impacts of TTPA on numeracy skills ($b = -0.016, SE = 0.008, p < .05, d_{wt} = -.10$). For social-emotional outcomes, impact estimates for prosocial and social competence skills did not reach traditional levels of statistical significance. There were marginally significant impacts of TT on social competence ($b = 0.015, SE = 0.009, p < .10, d_{wet} = .11$). For executive function skills, there were statistically significant impacts of TT on inhibitory control ($b = 0.015, SE = 0.009, p < .10, d_{wet} = .08$). There were also statistically significant impacts on children’s behavioral regulation for both TT ($b = 0.015, SE = 0.006, p < .01, d_{wet} = .15$) and TTPA ($b = 0.014, SE = 0.006, p < .05, d_{wet} = .14$).

To test differences between the TT and TTPA conditions, all models were rerun with TTPA as the reference group. There were significant differences between the two treatments, including in impacts on literacy ($b = 0.026, SE = 0.010, p < .01$) and numeracy ($b = 0.016, SE = 0.007, p < .05$). There were no differences in social-emotional or executive function outcomes.

Table 2

**Proportion of Variance in Primary School Outcomes for Children’s Pre-Primary Schools and Classrooms**

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Child</th>
<th>Class</th>
<th>School</th>
</tr>
</thead>
<tbody>
<tr>
<td>Literacy</td>
<td>.644</td>
<td>.122</td>
<td>.235</td>
</tr>
<tr>
<td>Numeracy</td>
<td>.664</td>
<td>.315</td>
<td>.021</td>
</tr>
<tr>
<td>Prosocial</td>
<td>.852</td>
<td>.060</td>
<td>.088</td>
</tr>
<tr>
<td>Social competence</td>
<td>.704</td>
<td>.222</td>
<td>.074</td>
</tr>
<tr>
<td>Cognitive flexibility</td>
<td>.944</td>
<td>.011</td>
<td>.045</td>
</tr>
<tr>
<td>Inhibitory control</td>
<td>.903</td>
<td>.097</td>
<td>.000</td>
</tr>
<tr>
<td>Behavioral regulation</td>
<td>.878</td>
<td>.028</td>
<td>.094</td>
</tr>
</tbody>
</table>

Table 3

**Treatment Impacts on Child Outcomes Two Years After Program Implementation**

<table>
<thead>
<tr>
<th>Outcome</th>
<th>$b$</th>
<th>$(SE)$</th>
<th>$p$-value</th>
<th>Effect size ($d_{wt}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Literacy</td>
<td>.019</td>
<td>(.010)</td>
<td>.057†</td>
<td>.11</td>
</tr>
<tr>
<td>TTPA</td>
<td>-.007</td>
<td>(.010)</td>
<td>.507</td>
<td>-.04</td>
</tr>
<tr>
<td>Numeracy</td>
<td>.000</td>
<td>(.007)</td>
<td>.968</td>
<td>.00</td>
</tr>
<tr>
<td>TTPA</td>
<td>-.016</td>
<td>(.008)</td>
<td>.036*</td>
<td>-.10</td>
</tr>
<tr>
<td>Prosocial</td>
<td>.012</td>
<td>(.009)</td>
<td>.156</td>
<td>.08</td>
</tr>
<tr>
<td>TTPA</td>
<td>.007</td>
<td>(.009)</td>
<td>.450</td>
<td>.05</td>
</tr>
<tr>
<td>Social competence</td>
<td>.015</td>
<td>(.009)</td>
<td>.097†</td>
<td>.11</td>
</tr>
<tr>
<td>TTPA</td>
<td>.005</td>
<td>(.009)</td>
<td>.598</td>
<td>.04</td>
</tr>
<tr>
<td>Cognitive flexibility</td>
<td>.022</td>
<td>.009</td>
<td>.018*</td>
<td>.12</td>
</tr>
<tr>
<td>TTPA</td>
<td>.009</td>
<td>.009</td>
<td>.339</td>
<td>.049</td>
</tr>
<tr>
<td>Inhibitory control</td>
<td>.015</td>
<td>.009</td>
<td>.073†</td>
<td>.082</td>
</tr>
<tr>
<td>TTPA</td>
<td>.013</td>
<td>.009</td>
<td>.153</td>
<td>.067</td>
</tr>
<tr>
<td>Behavioral regulation</td>
<td>.015</td>
<td>(.006)</td>
<td>.010**</td>
<td>.15</td>
</tr>
<tr>
<td>TTPA</td>
<td>.014</td>
<td>(.006)</td>
<td>.021*</td>
<td>.14</td>
</tr>
</tbody>
</table>

Note: Sample size = 3,435 children nested in 240 schools. TT = teacher training condition; TTPA = teacher training plus parental-awareness condition. Models include all children sampled at baseline. Children nested in 240 schools from which they were sampled at baseline. All estimates derived from 100 multiply-imputed datasets and include the following control variables from baseline: district, respective baseline score, public vs. private school, KG level, child gender, age, and a set of 5 dummy variables indicating school and child mobility that occurred during the intervention year.† $p < .10$. * $p < .05$. ** $p < .01$.
Moderation of Persistent Impacts by Classroom Environment

For classroom environment, I examined instructional support, emotional support, and teacher burnout. The results are presented in Table 4. There were no moderating effects of classroom instructional support on any outcome. There was evidence of moderating effects of classroom emotional support on numeracy outcomes for both TT ($b = 0.028, SE = 0.015, p < .07$) and TTPA ($b = 0.030, SE = 0.015, p < .05$). The results are graphed in Figure 1 for ease of interpretation, and indicate that for TT, impacts of the treatment were positive and largest in classrooms with relatively high levels of emotional support. For TTPA, a similar pattern is observed, though the figure also shows that the persistent negative impacts on numeracy were concentrated in classrooms with low levels of emotional support.

There was also evidence that teacher burnout moderated persistent impacts on academic outcomes. This was the case for literacy outcomes for both TT ($b = 0.020, SE = 0.007, p < .01$) and TTPA ($b = 0.013, SE = 0.007, p < .05$), and for numeracy outcomes for TT ($b = 0.013, SE = 0.006, p < .05$). The results are graphed in Figures 2 and 3 and indicate that there were positive persistent impacts on both outcomes in classrooms where teachers had lower burnout levels. There were no moderating effects for social-emotional or executive function outcomes.

Table 4

Moderation of Impact Estimates by Classroom Quality and Teacher Burnout

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Instructional support</th>
<th>Emotional support</th>
<th>Teacher burnout</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>b (SE)</td>
<td>p-value</td>
<td>b (SE)</td>
</tr>
<tr>
<td>Literacy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TT</td>
<td>-.002 .037 .948</td>
<td>.032 .059 .592</td>
<td>.053 .015 .001***</td>
</tr>
<tr>
<td>TTPA</td>
<td>-.027 .039 .484</td>
<td>.052 .057 .361</td>
<td>.016 .016 .310</td>
</tr>
<tr>
<td>Moderator</td>
<td>.006 .014 .659</td>
<td>.010 .013 .454</td>
<td>.010 .005 .060†</td>
</tr>
<tr>
<td>TT × Moderator</td>
<td>.011 .018 .535</td>
<td>.015 .017 .388</td>
<td>-.20 .007 .005**</td>
</tr>
<tr>
<td>TTPA × Moderator</td>
<td>.011 .019 .584</td>
<td>.014 .017 .425</td>
<td>-.13 .007 .052†</td>
</tr>
<tr>
<td>Numeracy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TT</td>
<td>-.006 .030 .831</td>
<td>.091 .050 .069†</td>
<td>.023 .012 .053†</td>
</tr>
<tr>
<td>TTPA</td>
<td>-.018 .032 .586</td>
<td>-.115 .050 .021*</td>
<td>-.009 .013 .481</td>
</tr>
<tr>
<td>Moderator</td>
<td>.010 .013 .411</td>
<td>-.021 .012 .073†</td>
<td>.001 .004 .756</td>
</tr>
<tr>
<td>TT × Moderator</td>
<td>.004 .015 .811</td>
<td>.028 .015 .063†</td>
<td>-.13 .006 .018*</td>
</tr>
<tr>
<td>TTPA × Moderator</td>
<td>.001 .016 .951</td>
<td>.030 .015 .042†</td>
<td>-.004 .005 .480</td>
</tr>
<tr>
<td>Prosocial</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TT</td>
<td>.046 .034 .179</td>
<td>.018 .060 .764</td>
<td>.020 .014 .152</td>
</tr>
<tr>
<td>TTPA</td>
<td>.009 .036 .792</td>
<td>-.033 .057 .561</td>
<td>.016 .014 .245</td>
</tr>
<tr>
<td>Moderator</td>
<td>-.009 .015 .548</td>
<td>-.007 .014 .638</td>
<td>-.003 .005 .505</td>
</tr>
<tr>
<td>TT × Moderator</td>
<td>-.017 .017 .304</td>
<td>-.002 .018 .929</td>
<td>-.004 .006 .479</td>
</tr>
<tr>
<td>TTPA × Moderator</td>
<td>-.002 .018 .926</td>
<td>.012 .017 .479</td>
<td>-.005 .006 .430</td>
</tr>
<tr>
<td>Social competence</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TT</td>
<td>.003 .035 .935</td>
<td>.023 .060 .697</td>
<td>.030 .014 .033*</td>
</tr>
<tr>
<td>TTPA</td>
<td>-.031 .035 .371</td>
<td>-.032 .058 .586</td>
<td>.016 .014 .257</td>
</tr>
<tr>
<td>Moderator</td>
<td>-.013 .014 .351</td>
<td>.005 .013 .693</td>
<td>-.011 .005 .820</td>
</tr>
<tr>
<td>TT × Moderator</td>
<td>.007 .017 .701</td>
<td>.012 .018 .505</td>
<td>-.008 .006 .210</td>
</tr>
<tr>
<td>TTPA × Moderator</td>
<td>.019 .017 .269</td>
<td>.011 .017 .508</td>
<td>-.005 .006 .420</td>
</tr>
<tr>
<td>Cognitive flexibility</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TT</td>
<td>.019 .043 .660</td>
<td>.021 .066 .751</td>
<td>.030 .016 .053†</td>
</tr>
<tr>
<td>TTPA</td>
<td>.005 .042 .914</td>
<td>-.047 .063 .456</td>
<td>.017 .016 .279</td>
</tr>
<tr>
<td>Moderator</td>
<td>-.014 .019 .914</td>
<td>-.006 .016 .693</td>
<td>.001 .006 .910</td>
</tr>
<tr>
<td>TT × Moderator</td>
<td>.000 .021 .995</td>
<td>.000 .020 .986</td>
<td>-.006 .008 .413</td>
</tr>
<tr>
<td>TTPA × Moderator</td>
<td>.001 .021 .975</td>
<td>.016 .019 .391</td>
<td>-.006 .008 .424</td>
</tr>
<tr>
<td>Inhibitory control</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TT</td>
<td>.035 .040 .384</td>
<td>.011 .065 .865</td>
<td>.022 .016 .143</td>
</tr>
<tr>
<td>TTPA</td>
<td>.029 .041 .482</td>
<td>-.034 .064 .594</td>
<td>.016 .016 .320</td>
</tr>
<tr>
<td>Moderator</td>
<td>-.012 .022 .595</td>
<td>.008 .020 .673</td>
<td>-.006 .008 .415</td>
</tr>
<tr>
<td>TT × Moderator</td>
<td>-.012 .020 .553</td>
<td>.000 .019 .991</td>
<td>-.006 .008 .404</td>
</tr>
<tr>
<td>TTPA × Moderator</td>
<td>-.010 .020 .624</td>
<td>.013 .019 .490</td>
<td>-.003 .007 .731</td>
</tr>
<tr>
<td>Behavioral regulation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TT</td>
<td>.004 .025 .859</td>
<td>.044 .041 .274</td>
<td>.027 .010 .006**</td>
</tr>
<tr>
<td>TTPA</td>
<td>.001 .026 .961</td>
<td>.030 .038 .427</td>
<td>.025 .010 .014*</td>
</tr>
<tr>
<td>Moderator</td>
<td>-.012 .013 .365</td>
<td>.016 .012 .175</td>
<td>.003 .005 .567</td>
</tr>
<tr>
<td>TT × Moderator</td>
<td>.005 .012 .680</td>
<td>-.009 .012 .451</td>
<td>-.007 .005 .135</td>
</tr>
<tr>
<td>TTPA × Moderator</td>
<td>.006 .013 .635</td>
<td>-.005 .011 .650</td>
<td>-.006 .005 .161</td>
</tr>
</tbody>
</table>

Note. Sample size = 3,435 children nested in 240 schools. TT = teacher training condition; TTPA = teacher training plus parental-awareness condition. Models include all children sampled at baseline. Children nested in schools from which they were sampled at baseline. All estimates derived from 100 multiply imputed datasets and include the following control variables from baseline: district, respective baseline score, public vs. private school, KG level, child gender, age, and a set of 5 dummy variables indicating school and child mobility that occurred during the intervention year.

† $p < .10$. ‡ $p < .05$. * $p < .01$. ** $p < .001$.
Discussion

This study addressed two critical questions about the influences of early childhood education on child development that have not been examined before in SSA, building on two previous studies from a school-randomized trial of a preschool teacher-training program in Ghana. In the previous studies, the training of preschool teachers was found to have positive impacts on children’s literacy, numeracy, and social-emotional skills in Year 1 during implementation (Wolf, Aber, Behrman, & Tsinigo, 2019); and only impacts on children’s social-emotional skills persisting in Year 2 (Wolf, Aber, Behrman, & Peele, 2019). When the same training was implemented with a parental-awareness intervention, there were no positive impacts on children.

This present study extended these results to examine, first, if any impacts on children’s developmental skills were sustained in Year 3 in three key developmental domains: academics (literacy and numeracy), social-emotional skills (i.e., prosocial and social competence), and executive function (i.e., cognitive flexibility, inhibitory control, and behavioral regulation). As such, this study constitutes the first test of persistence or convergence of a preschool teacher professional development program on children’s primary school outcomes in an SSA country. This study also examined if there were different patterns of sustained impacts based on the quality of children’s primary school classrooms. This is the first study to assess the role of “sustaining environments” in persistence of ECE impacts in the SSA region. Two important strengths are: (a) the measurement of quality using both observational data on process quality (as opposed to structural indicators), and (b) the expansion of the conceptual and operational definition of quality to include teacher burnout. To address these questions, I followed a large longitudinal sample of students originally in the two grades of preprimary school in the Greater Accra region of Ghana at the end of their Primary 1 or Primary 2 school year.

Persistent Impacts on Academic Outcomes

There was weak evidence for persistence of impacts on children’s academic outcomes for the full sample. In the Year 3 follow-up, there were marginally statistically significant positive impacts of the teacher-training treatment (TT) on literacy skills ($d_{w} = .11$, $p < .06$) and a small but significant negative impact ($d_{w} = -0.10$, $p < .05$) of the same treatment delivered with the parental-awareness (TTPA) intervention. The impacts on academic outcomes in Year 3 may be due to the increased academic demands of primary school, as children adjust their behavior to changing demands from their environment (Lourenco & Casey, 2013), and these changes may have been affected by earlier skill differences between the treatment groups. Alternatively, the appearance of impacts in Year 3 might be due to measurement-related issues. In the Year 1 and 2 follow-up studies, the same assessment battery was used to measure literacy and numeracy outcomes. In the Year 3 follow-up, however, a new assessment battery of literacy and numeracy was used given children’s growth and developmental changes. It is possible that the differential significance of impact findings across years is in fact due to the different measures. Given the relatively small impacts found in Year 1 of the program ($d_{w} = .11$ in both literacy and numeracy), the small magnitude of these persistence rates is not surprising. Importantly, there were significant differences in both outcomes contrasting TT and TTPA, with children in TT outperforming those in TTPA in literacy ($d_{w} = .15$, $p < .01$) and numeracy ($d_{w} = .09$, $p < .05$).
The negative impacts of TTPA on numeracy are concerning, as they suggest that whatever effect the treatment had on parents during the implementation of the program may have led to sustained changes in parenting practices that resulted in worse outcomes for children. Importantly, the magnitude of the impact is small. But interpreting these effects requires a deeper discussion of the context in which the program was implemented. Previous studies have shown that Ghanaian parents’ value early education and demand academically focused, rigorous instruction from teachers (Bidwell et al., 2014; Kabay et al., 2017). A recent study found parents’ engagement in cognitive stimulation to be negatively predictive of Ghanaian children’s school-readiness skills (Wolf & McCoy, 2019), suggesting that parents may have a vision for schooling that is in contradiction to developmental learning processes. Another study in Tanzania found that parents consider respect and social compliance as core values they hope schooling will instill in their children, while teachers value confidence and curiosity (Jukes et al., 2018). It is possible that parents compensated for the changes in their child’s preschool by becoming more actively involved at home, ultimately to the detriment of their child’s learning.

There may be other explanations that are related to the study design. For example, given the large sample size and the small magnitude of the effect, it is possible that the negative impact detected in this study was a Type I error. Alternatively, while baseline equivalence was established (Wolf, Aber, Behrman, & Tsing, 2019), it is possible that the treatment groups were not balanced on variables that were not measured or observed in ways that could have created the impact independent of the treatment. Given that these findings are quite unusual, these explanations are worth considering as well. Nonetheless, more research is needed to understand Ghanaian parents’ desires and goals for their child’s socialization and education, and the ways that they attempt to support these processes, in order to ensure that future interventions builds on these desires in positive ways.

Persistent Impacts on Social-Emotional and Executive Function Outcomes

There was evidence of sustained impacts on social-emotional and executive function outcomes. There were small positive impacts ($d_{out} = .08-.15$) on all outcomes examined in these domains, though with variable precision, with four of the five outcomes reaching statistical significance at $p < .10$. Impacts on prosocial skills, which were measured through direct assessments with trained data collectors, were not statistically significant. Impacts on teacher-reported social competence were marginally statistically significant in the TT treatment condition ($d_{out} = 0.11$, $p < .10$). Given the relatively small impacts on social-emotional skills in Year 1 of the program ($d_{out} = .18$) and Year 2 ($d_{out} = .13$), the magnitude of the persistence rates is relatively consistent.

Furthermore, there were sustained impacts of the TT condition on executive function skills, specifically cognitive flexibility ($d_{out} = 0.12$, $p < .05$), and marginally significant impacts on inhibitory control ($d_{out} = 0.08$, $p < .08$). Finally, there were impacts of both treatment conditions on assessor-reported behavioral regulation ($d_{out} = 0.15$ and $0.14$ for TT and TTPA, respectively). It is promising that there is some evidence for sustained (albeit small) impacts on executive function skills, as some have argued that this is a key channel for longer-term impacts of ECE interventions (Raver, 2003; Raver et al., 2011). The pattern of results differs from recent studies in the United States. Several such studies found no detectable effects of preschool shortly after kindergarten (Hill et al., 2015; Puma et al., 2012). Interestingly, a few recent studies found that children who attended preschool outperformed their peers academically but had lower psychosocial skills in primary school (e.g., Ansari, 2018) or that positive impacts on academic and behavioral outcomes reversed in early primary school (Lipsey, Farran, & Durkin, 2018).

Sustaining Environments: Variation by Primary School Classroom Environments

I also examined variation in persistent effects based on children’s primary classroom environments. Studies testing sustaining environments have used a range of measures to define quality, including both structural and process features of classrooms and schools. In this study, sustaining environments were measured through direct observations of teacher–child interactions during classroom instruction (instructional and emotional support) and teacher burnout levels. These three elements of the classroom context have not yet been examined directly in the literature on sustaining environments, though evidence suggests they are key drivers for child development and learning (e.g., Hamre et al., 2013; Pianta et al., 2005).

There was supporting evidence that higher quality environments were more likely to yield persistent gains from exposure to quality ECE for academic outcomes. Despite no main effects of TT on numeracy, the pattern of findings showed small positive, persistent impacts for children in classrooms with high levels of emotional support. Similarly, the negative impacts of TTPA on numeracy were concentrated for children in classrooms with low emotional support. It is possible that there was no convergence in academic skills in higher quality classroom environments because better teachers build on children’s existing skills. Because teachers in Ghana tend to focus on academic skill development (Bidwell et al., 2014), this may have further ingrained differences that may have existed at the start of the school year.

There were no differences in sustained impacts based on classroom instructional support, suggesting that in the context of this intervention, continued classroom emotional support (which also improved during the intervention year in children’s ECE classrooms) was more consequential in buttressing previous gains from the intervention. The results support and extend the findings that alignment between ECE and early primary school classroom environments may be an important factor in sustaining impacts from ECE (Clements et al., 2013). Furthermore, the results suggest that cumulative high-quality classroom environments in the preschool and early elementary school years can lead to better developmental outcomes for children (Carr, Mokrova, Vernon-Feagans, & Burchinal, 2019) and that cumulative poor-quality environments in this period can be detrimental.

Finally, I examined teacher burnout as an additional consequential indicator of the classroom context given its relevance to LMICs (e.g., Bennell & Akyeampong, 2007; Lee & Wolf,
2019). The original QP4G teacher-training reduced teacher burnout and improved nurturing teacher–child interactions. This element of the classroom environment may be of particular relevance when considering the contrast between children’s ECE and primary classroom contexts. Impacts on both literacy and numeracy skills were positive in classrooms where teachers had low levels of burnout, and negative impacts of TTPA on numeracy were larger in classrooms with teachers with high levels of burnout. These findings build support for examining teacher burnout more broadly in education research, including a recent study finding that burnout was directly associated with lower student achievement (McLean & McDonald Connor, 2015). Teacher burnout was not correlated with the teacher–child interactions observed during the classroom observation period, suggesting that burnout may affect interactions outside of formal instructional time in ways that may hinder children’s learning. The results highlight an important area for research on sustaining environments to consider teacher burnout and the potential pathways through which it may moderate sustained preschool impacts. Future research may also consider the joint effects of teacher burnout and classroom quality to more holistically depict children’s subsequent schooling experiences. Given that the constructs were uncorrelated in this dataset, understanding the potential cumulative consequences of both would be important.

Interestingly, variation in persistent impacts was only found for academic skills, while the sustained impacts on nonacademic skills did not depend on subsequent school environments. Bailey et al. (2017) argued that interventions that target (directly or indirectly) skills in children that are malleable, fundamental, and would not develop over time in the absence of the intervention are more likely to yield persistent impacts. They characterize literacy and numeracy skills, as well as social-emotional and executive function skills, as both malleable and fundamental. But they claim rudimentary literacy and numeracy skills are among those that grow rapidly in most counterfactual conditions. In contrast, they identify other skills that may not “fade-out,” especially in more adverse environments, including some normative cognitive functions such as executive functions. Bailey and colleagues argued that skills that meet all three criteria (malleable, fundamental, would not develop nor-}
References


YEAR 3 IMPACTS OF QUALITY PRESCHOOL IN GHANA

This document is copyrighted by the American Psychological Association or one of its allied publishers. This article is intended solely for the personal use of the individual user and is not to be disseminated broadly.


Received February 17, 2019
Revision received August 28, 2019
Accepted September 6, 2019