

Small Hydro Resource Mapping in Vietnam Final Workshop

March 2017

This report was prepared by Gesto Energy Consulting, under contract to The World Bank.

This is one of the several outputs from the small hydro resource mapping component of the activity "Renewable Energy Resource Mapping and Geospatial Planning – Vietnam" [Project ID: P145513]. This activity is funded and supported by the Energy Sector Management Assistance Program (ESMAP), a multi-donor trust fund administered by The World Bank, under a global initiative on Renewable Energy Resource Mapping. Further details on the initiative can be obtained from the <u>ESMAP website</u>.

Copyright © 2017 THE WORLD BANK Washington DC 20433 Telephone: +1-202-473-1000 Internet: www.worldbank.org

The World Bank does not guarantee the accuracy of the data included in this work and accept no responsibility for any consequence of their use. The boundaries, colors, denominations, and other information shown on any map in this work do not imply any judgment on the part of The World Bank concerning the legal status of any territory or the endorsement or acceptance of such boundaries.

The material in this work is subject to copyright. Because The World Bank encourages dissemination of its knowledge, this work may be reproduced, in whole or in part, for non-commercial purposes as long as full attribution to this work is given. Any queries on rights and licenses, including subsidiary rights, should be addressed to World Bank Publications, The World Bank Group, 1818 H Street NW, Washington, DC 20433, USA; fax: +1-202-522-2625; e-mail: pubrights@worldbank.org. Furthermore, the ESMAP Program Manager would appreciate receiving a copy of the publication that uses this publication for its source sent in care of the address above, or to esmap@worldbank.org.

www.gestoenergy.com

Small Hydropower Mapping and Planning in Vietnam Technical Assistance

Workshop on Small Hydropower GIS Database and Guidelines for Review and Planning on Small Hydropower

Jorge ANDRÉ, jorge.andre@gestoenergy.com

Hanoi, February 2017

INTRODUCTION DATA COLLECTION SMALL HYDROPOWER GIS DATABASE GUIDELINES FOR REVIEW AND PLANNING OF SMALL HYDROPOWER TESTING AND FINE-TUNING OF THE GUIDELINES CLOSING REMARKS

INTRODUCTION

WHAT IS THE MAIN OBJECTIVE OF THE TECHNICAL ASSISTANCE?

SMALL HYDROPOWER MAPPING AND PLANNING 😑 Gesto

THE CURRENT TECHNICAL ASSISTANCE CONSISTED ON TWO MAIN ACTIVITIES

Activity 1

 Advisory services to a National Consultant for building up a national small hydropower GIS database

Activity 2

 Developing guidelines for improved planning of small hydropower

PROJECT IMPLEMENTATION PLAN

ACTIVITY 1: ADVISORY SERVICES FOR BUILDING UP A SMALL NATIONAL HYDRO GIS DATABASE

DESIGN OF A GIS DATABASE FOR DEVELOPMENT OF GUIDELINES INCEPTION PHASE FOR REVIEW AND PLANNING OF SHP DEVELOPMENT **BUILDING OF MOIT** 10 INCEPTION MISSION COMPLEMENTARY COMPLIATION OF COORDINATION WITH THE PARALELL DETAILED REVIEW OF CURRENT PRESENTATION AND APPLICATION OF THE DRAFT REPORT Evaluation of previous studies EXISTING INFO AND DATA CONTRACT PLANNING PROCEDURES FOR SHP IN PROPOSED GUIDELINES FOR REVIEW AND Description of used methodology Assessment of existing local and global Existing SHP projects Discussion and update of proposed • VIETNAM PLANNING OF SHP Detailed maps · Planned or potential SHP projects data sources design SWOT analysis Feedback Inputs to the Workshop ۲ Meetings X Plan for purchase of software and Legal framework Simulation of a real case hardware, compilation of data, Assessment of expected info to be 2 digitizing, population and available for review and planning of WORKSHOP INITIAL COMPILATION OF EXISTING DESIGNING A GIS DATABASE FOR documentation of the GIS database SHP · Results presentation INFO AND DATA INFO ON SHP DEVELOPMENT 15 UPDATED IMPROVED GUIDELINES FOR × Next steps Comprehensive list of existing small Proposed software and hardware REVIEW AND PLANNING OF SHP AND hydro projects • Types, formats and attributes of data to TECHNICAL ASSISTANCE RECOMMENDATIONS Brief characterization of the sector include (18) · Advisory services during Institutional assessment × FINAL REPORT Inclusion of readily available global DRAFT GUIDELINES FOR REVIEW AND implementation PLANNING OF SHP geographic data One week mission in Vietnam for local Implementation of a gradual process Assessment of the inclusion of data ³DETAIL OF PRELIMINARY METHODOLOGY support from other government bodies Recommendations OF REPORT Possible integration on an overall INCEPTION REPORT planning process for RE in Vietnam 8 RECCOMENDATIONS ON OPERATION AND SYMBOLS: MAINTENACE OF THE GIS DATABASE Travel to/from Vietnam DECISION MEETING Deliverable 🎨 Workshop/Capacity Building WORKING REPORT ON THE DESIGN FINAL METHODOLOGY OF THE SHP GIS DATABASE B/GoV decisions

Coordination with National Consultant Vietnamese Academy of Water Resources

ACTIVITY 2: DEVELOPING GUIDELINES FOR IMPROVED PLANNING OF SMALL HYDRO

Mission	Date	Institutions involved	Objectives
Inception	October/ November 2014	MOIT, WB, MONRE, EVN, MARD, MRC, Suoi Tan Joint Stock Company, VAWR	Data collection, fine-tune of proposed methodology. Site visits
Interim I	November 2015	MOIT, WB, VAWR	Working mission
Workshop I	February 2016	MOIT, WB, VAWR	Small hydropower GIS demo version presentation
Interim II	May 2016	Lao Cai DOIT, MOIT, EVN, PECC-1, VAWR, WB	Visits to DOIT's and other stakeholders
Workshop II	February 2017	MOIT, WB, VAWR	Results presentation and validation

DATA COLLECTION

THE DATA COLLECTION STARTED WITH THE GATHERING OF RELEVANT LOCALLY AVAILABLE PROJECT DATASETS...

Current and future situation for LHP (Consultant's processing). Source: MOIT (2014).

MHP preparing for construction status (Consultant's processing). Source: MOIT (2014).

Current and future situation for SHP (Consultant's processing). Source: MOIT (2014).

Vietnam Energy Map (Consultant's processing). Source: Japan External Trade Organization (JETRO)

....AND PROCEEDED TO GLOBALLY AVAILABLE SPATIAL AND TEMPORAL DATASETS

Land Use (GeoNetwork, Consultant's processing)

Land Cover (GlobCover 2010, Consultant's processing)

(GADM data, Consultant's processing).

SPECIFIC SMALL HYDROPOWER DATA AND TECHNICAL FEATURES WAS COLLECTED BY THE NATIONAL CONSULTANT

Project: Hydropower Mapping and Planning

Inception report

4.2 Database structure

Table 4-1. List of database structure table

No	Table name	No	Table name
1	HydropowerProjects	8	Province
2	Reservoir	9	District
3	Dam	10	Communal
4	Spillway	11	River
5	Operation Dam Table	12	Type Categor
6	Dam safety Table	13	Category
7	Project profile Table		

	Table 4-2. De	etail of database	structu	re
No	Fiel	Data Type	Unit	Note EN
All fl	e tables above have to extend d	ata follow:		
1	created_by	character varying(50)		Data create by
2	created_at	time with time zone		Data create at
3	last_modified_by	character varying(50)		Data last modif
4	last_modified_at	time with time zone		Data last modif
5	deleted_status	bit		Status of delete
Desc	ription detail for each table (def	fault with extend of	ibove)	
Tabl	e name: hydropower_projects_	tb		(Hydropowerł ts Table)
Ι	General information			
1	project _hydropower_code	integer		Primary key
2	project _hydropower_name	character varying(200)		Name of projec
3	province_code_ref	integer		Name province(Refer province_tb)
4	district_code_ref	integer		Name district(Refer district_tb)

Vietnam Academy for Water Resources

5	commune_code_ref	integer
6	install_capacity	integer
7	river_code_ref	character varying(50)
8	break_ground_date	time with time zone
9	commission_date	time with time zone
10	total_project_cost	double precisions
11	name_of_developer	character varying(200)
12	address	character varying(500)
		character

Project: Hydropower Mapping and Planning Inception report

No	Fiel	Data Type	Unit	Note EN
5	commune code ref	integer		Name commune(Refe
Ĩ.,	commune_couc_ter	micher		commune tb)
6	install capacity	integer		Install Capacity
2		character		Name of river
1	river_code_rer	varying(50)		to commune th
8	break_ground_date	time with time		Break Ground
0	commission date	time with time		Commission da
·		zone		
10	total_project_cost	double		Total project co
		character		
11	name_of_developer	varying(200)		Name of Devel
10		character		A 33
12	address	varying(500)		Address
13	tel or fav	character		Tel/Fax
1.5	ter_or_lax	varying(100)		TOPIAA
14	email	character		Email
14	chian	varying(100)		Linen
п	Total land loss for project dev	elopment		
15	cultivation	double	ha	Cultivation
	cultivation	precision		cuntration
16	two rice crops	double	ha	2 rice crops
		precision		
17	vegetation_crop	precision	ha	Vegetation croj
		double		Non Agri
18	non_agriculture_land	precision	ha	Land
10	21 J J	double		D (1 1 1
19	residence_land	precision	na	Residence land
20	land for manific numbers	double	ha	Land for S
20	land_loi_specific_purpose	precision	ща	purpose
21	river_stream_land	double	ha	River/stream la
		double		
22	forest	precision	ha	Forest
22	plantation	double	ha	Plantation
25	plaination	precision	110	Tiamation
24	natural forest	double	ha	Natural forest
		precision		
25	non used land	double	ha	Non used land
		precision	L	
ш	Resettlement and minority et	hic		

Vietnam Academy for Water Resources

1	waterway_code	integer	Primary key
2	intake_type_ref	integer	Type separated, dam.etc)(Re category_tb)
	Vietnam Academy for	Water Resour	ces

Project: Hydropower Mapping and Planning

Data Type Unit

m

m

m

m

m

 m^3/s

double

precisions double

precisions

precision

double

integer

integer

geometry

integer

nteger

double

integer characte

integer

integer

double

precision

characte

varying(10

integer

doubl

double

integer

precision

varving(100

precision

varying(50)

Note EN

Crest width b

Length on cress

Maximum hei

Refer to reserv

Primary key

Number

spillway

weir...)

refer to Catalo

Threshold el

Number of spa

Dimension B

Number of s

to category tb)

Threshold eleva

Number of gate

Dimension B x

lischarge m³/s

Type of dissipa

Refer to reserv

(Waterway Ta

Design

Checking

discharge

with valve Type of valve

(Spillway Tabi

(oph Type labyrinth,

Inception report

6 length_on_cress

7 maximum heigh

8 reservoir_code_ref

spillway_code

spillway_type_ref

threshold_elevation

Spillway_with_valve

Table name: spillway

2 coordinates

3 free_spillway

6 number_of_span

dimension bal

9 type_of_valve_ref

10 threshold_elevation

13 design_flood_discharge

14 checking flood discharge

11 Number of gate

12 dimension_bxh

15 type_of_dissipater

16 reservoir_code_ref

Table name: waterway_th

I Intake

No

5 crest_width_b

4

8

Project: Hydropower Mapping and Planning Inception report

Figure 4-1. Allocation of the small and medium hydropower projects by province and installed capacity

Table 4-4. Summary of hydropower projects in cascade

Specific small hydropower data and technical features . Source: National Consultant's Inception Report.

SMALL HYDROPOWER GIS DATABASE

Outline national information on small hydropower with relevant data Support electrification planning

Foster the integration of small hydropower in other Renewable Energy Sources planning and development

GIS software

Open-source (eg. WebGIS) 🗸

vs.

Proprietary (eg. ArcGIS Online)

Main Advantages:

- Free and Open Source Software
- Free plugins
- Numerous updates available each year
- Huge community of users can easily support in technical issues
- Multi-plataform (Windows, Mac or Linux)

Database software

Open-source (eg.PostgreSQL) V

VS.

Proprietary (eg. MySQL)

Main Advantages:

- Free and Open Source Software
- The most advanced, SQLcompliant and open-source ORDBMS
- Is supported by a devoted and experienced community which can be accessed for free;
- Strong third-party support: PostgreSQL is adorned with many great and open-source thirdparty tools for designing, managing and using the management system.

THE ADVISORY SERVICES FOR THE SMALL HYDROPOWER GIS DATABASE HAVE BEEN FOCUSING ON THE REVIEW AND PLANNING TOOL APPROACH

THE DATABASE HAS BEEN STEADILY PROGRESSING TOWARDS A USER-FRIENDLY AND VALUABLE TOOL WITH A SIGNIFICANT AMOUNT OF RELEVANT DATA...

Recommendations

- Conclude data collection (fill data gaps)
- Review coordinates with aerial photos
- Streamline "Import" and "Export" base map options
- Customize the representation of the project (dam or powerhouse)
- Confirm the existence of a larger number of dams versus powerhouses or spillways
- Include a "powerhouse" tab on the main menu
- Organize the projects management main menus in the same fashion as the projects reports
- Include the "design head" and "flow features" in the tab menus
- Review the "Translate to English" option in all sections
- Review the "Export map background" option for other than the default base map
- Review the duration of filter option on map visualization
- Assess the workability of including global data on the database (meteo data, land cover, land use, ...)
- Include legal framework links or documents for download

GUIDELINES FOR REVIEW AND PLANNING OF SMALL HYDROPOWER

WHAT ARE THE MAIN PURPOSES OF THE GUIDELINES FOR REVIEW AND PLANNING OF SMALL HYDROPOWER?

GUIDELINES FOR REVIEW AND PLANNING OF SMALL HYDROPOWER

Evaluate the current planning procedures

Develop recommendations for review and planning of small hydropower Promote the use of the small hydropower GIS database as a planning tool

Large hydropower

Studies are conducted by qualified and experienced companies

The process comprises a multicriteria analysis based on technical, economic, environmental and social considerations

Development in line with the growth plans for the country

Small hydropower

The capacity for development is generally lower: developed at a provincial level, usually with limited capacity and resources

Often developed by private investors and many of them have little experience in hydropower

Difficult to predict the accuracy of the initial studies

TO ADDRESS THE ISSUES CONCERNING SMALL HYDROPOWER PLANNING, A SET OF GUIDELINES HAVE BEEN DRAFTED WITH TWO VARIED APPROACHES

GUIDELINES FOR REVIEW AND PLANNING SMALL HYDROPOWER

THE REGIONAL APPROACH

GUIDELINES FOR REVIEW AND PLANNING SMALL HYDROPOWER

EVALUATION OF THE TWO INDICATORS

Hydropower potential

Direct methods:

- Specific potential energy generation
- Specific potential power output
- Specific head

Ancillary method:

Hydropower potential map

Environmental impact

- Protected areas
- Land use
- Plant operation type
- Morphology
- Biology
- Type of water body
- Importance as habitat
- ...

THE HYDROPOWER POTENTIAL MAPS CAN BE A MAJOR ENHANCEMENT ON HYDROPOWER PLANNING SINCE THE EARLY STAGES

Out of the scope of the Technical Assistance

28

THE REGIONAL APPROACH COMPRISES THE CLASSIFICATION OF THE RIVER STRETCH ON A MATRICIAL SCHEME UNDER TWO VECTORS

Favorable	Less-favorable	Non-favorable		Exclusion
For hydropower projects development	For hydropower projects development	For hydropower projects development		Hydropower projects forbidden by law
In accordance with environmental legal framework. Construction of SHP in general possible.	Environmental aspect needs to be assessed, weighing all relevant criteria.	SHPs possible only in exceptional cases (e.g. auto-supply)	۹ ۲ ۲	No hydropower exploitation possible. Protected areas where any interventions are forbidden by law.
	under conditional criteria.			

Classification of the river stretch regarding environmental impact and hydropower potential.

THE PROJECT APPROACH, PROCESS 1: CONFIRMATION OF INITIAL STUDIES

GUIDELINES FOR REVIEW AND PLANNING SMALL HYDROPOWER

THE OBJECTIVE: ENSURE THAT THE STUDIES SUBMITTED FOR APPROVAL ARE ACCURATE AND THAT NO SIGNIFICANT CHANGES SHALL OCCUR

Watershed area

- Evaluation of the correct location of the project
- Checking eventual conflicting water uses inside the basin
- Easily confirmed via a Digital Elevation Model

Modular and environmental flows

- Confirmation of the flow either by ground-based data, closeby verified projects or waterbalance methods
- Checking for water availability and energy output.
- Environmental flow may be a fraction of the modular flow.

Available head

- Height confirmation between the full supply level and the tailrace.
- Easily confirmed via a Digital Elevation Model

THE PROJECT APPROACH, PROCESS 2: PROJECT RANKING

VN.2017.A.001.0

SMALL HYDROPOWER MAPPING AND PLANNING 😑 Gesto

MULTI-CRITERIA ANALYSIS, EACH CRITERIA WITH A SPECIFIC WEIGHT TO **OBTAIN THE PROJECT RANKING**

Environmental criteria

- Protected areas
- Flooded area
- Dam height
- **Ecological impacts**
- Integration in the ٠ landscape
- Minimization of impacts

...

TESTING AND FINE-TUNING OF THE GUIDELINES

WHAT IS THE MAIN PURPOSE OF TESTING THE GUIDELINES FOR REVIEW AND PLANNING OF SMALL HYDROPOWER?

IT WAS DECIDED THAT THE GUIDELINES OUGHT TO BE TESTED IN LAO CAI

REMINDER OF THE REGIONAL APPROACH

TO DETERMINE THE HYDROPOWER POTENTIAL TWO SEPARATE METHODS WERE APLLIED

METHOD 1: SPECIFIC HEAD

- Ratio of the available head and the length of the river stretch
- Describes the slope of the river stretch
- Easily obtained via a Digital Elevation Model

Hydropower potential obtained from the specific head method

A MORE COMPLEX AND ANCILLIARY METHOD BASED ON A PROPRIETARY ALGORITHM WAS ALSO APPLIED

METHOD 2: HYDROPOWER POTENTIAL MAP

- Mapping of the possible capacities that can be installed
- Dependent on both hydrological and morphological features
- Calibrated with technical, economical and energetic parameters
- Complex processing and analysis requirements

Stage 1: Obtaining the average daily flow (eg. using Water-Balance System)

Temperature (global satellite data)

METHOD 2: HYDROPOWER POTENTIAL MAP

- Mapping of the possible capacities that can be installed
- Dependent on both hydrological and morphological features
- Calibrated with technical, economical and energetic parameters
- Complex processing and analysis requirements

Stage 2: Mapping the potential

Theoretical hydropower potential map

THE HYDROPOWER POTENTIAL MAP WAS COMBINED WITH THE PROJECTS ALREADY ON THE SMALL HYDROPOWER GIS DATABASE

Hydropower potential map and matching identified projects

AFTER OBTAINING THE HYDROPOWER POTENTIAL, THE RIVER STRETCHES WERE CLASSIFIED IN "LITTLE", "MEDIUM" OR "HIGH" POTENTIAL

HYDROPOWER POTENTIAL CLASSIFICATION

- Capacity below 1 MW:
 "Little"
- Capacity between 1 and 10 MW: "Medium"
- Capacity over 10 MW:
 "High"

Regional approach: Hydropower potential classification

THE ENVIRONMENTAL IMPACT WAS DETERMINED COMBINING THE PROTECTED AREAS WITH THE LAND USE

AFTER OBTAINING THE ENVIRONMENTAL IMPACT, THE RIVER STRETCHES WERE CLASSIFIED IN "LOW", "MEDIUM", "HIGH" OR "EXCLUSION" IMPACT

ENVIRONMENTAL IMPACT CLASSIFICATION

- National Parks:
 "Exclusion"
- Nature Reserves:
 "High"
- Forest Areas:
 "Medium"
- Remainder: "Low"

Regional approach: Environmental impact classification

THE RIVER STRETCHES CLASSIFICATION WAS OBTAINED CROSSING THE HYDROPOWER POTENTIAL WITH THE ENVIRONMENTAL IMPACT

River stretches classification

FINAL RIVER STRETCHES CLASSIFICATION

			tydrop ower pote	ntial		LASSIFICATION		
ļ			invironmental im		OF THE RIVER STRETCH			

THE RIVER STRETCH CLASSIFICATION MAY BE A VALID TOOL FOR PLANNING

River stretches final classification and identified projects

REMINDER OF THE PROJECT APPROACH, PROCESS 1: CONFIRMATION OF INITIAL STUDIES

GUIDELINES FOR REVIEW AND PLANNING SMALL HYDROPOWER

Со	nfirmation of	Waters	hed area	Environme	ntal flow
ir	nitial studies	Modular flow		Available	e head
		Pr	oject ranking		
	 Protected areas Forest area Flooded area Dam height 	 Minority ethnic Cultivation area Rice crops Flooded houses 	 Energy unit cost CAPEX 	 Installed capacity Firm capacity Working hours 	

CHECKING THE INITIAL STUDIES' PARAMETERS MAY BE A GOOD INDICATOR OF THEIR QUALITY

Example of the confirmation of the watershed area

49

REMINDER OF THE PROJECT APPROACH, PROCESS 2: PROJECT RANKING

EIGHT PROJECTS LOCATED CLOSE BY IN VĂN BÀN DISTRICT WERE RANDOMLY SELECTED FOR EVALUATION

Data retrieved from the Small Hydropower GIS Database

Project name	Nậm Xây Luông 5	Nậm Khắt	Nậm Xây Nọi 2	Minh Lương	Tu Trên	Nậm Xây Luông 4	Nậm Xây Luông 3	Nậm Xây Luông
Project code	2035	2038	2041	2043	2046	3059	3064	4025
Status	Under construction	FS preparing	FS preparing	Planning				
Watershed Area (km2)	121.6	105.7	50.5	396.6	19.0	89.2	87.0	195.0
Flooded area at FSWL (km2)					19.00		0.17	
Rainfall (mm)		2100		2010	2000	2110	2110	2110
Qmod (m3s)		4.12	1.85	15.37	0.95		4.18	9.57
Dam height (m)	36.5	8.0	19.5	36.5	14.9	22.0		17.4
Capacity (MW)	7.2	7.5	12.0	28.0	2.8	12.0	8.0	13.0
Firm capacity (MW)	7.2	0.9	2.0	5.0	0.4	2.7		1.4
Energy (GWh)	29.50	33.36	44.97	98.46	11.19	48.75		44.11
Working hours (h)	0	4448	3748	3516	3996	4063	0	3393
Energy Unitary Cost (MillVND_kWh)				8.217	6.613	13.880		7.533
CAPEX (MillVND/kW)				28.893	26.429	56.392		25.558
# household	0	0	0	0	0	0	0	0
# household								
Minority ethnic		Dân tộc Dao						
Cultivation (ha)	4.2	2.3	0.0	32.7	0.0	0.0	0.0	3.6
Forest (ha)	0	0	0	0	0	0	0	0
Rice crops (ha)	3.1	2.3		32.7		0.0		

it approach		Enironnertal	Pr Social	oject ranking Economic	Energetic	
Proje	Criteria	Protected areas Forest area	Minority ethnic Cultivation area	Energy unit cost	 Installed capacity 	OF PROJECTS TO BE

Criteria	Environmental	Weight	Social	Weight	Economic	Weight	Energetic	Weight
	Protected areas	12.50%	Ethnic minorities	12.50%	Energy Unitary Cost	12.50%	Capacity	6.25%
Sub-	Forest area	5.00%	Cultivation area	6.25%	CAPEX	12.50%	Firm capacity	12.50%
criteria	Flooded area at FSWL	3.75%	Rice crops	6.25%			Working hours	6.25%
	Dam height	3.75%						
Total weight	Environmental	25%	Social	25%	Economic	25%	Energetic	25%

The scenario chosen was a balanced scenario with equal weights for every criteria

reach		vitial studies	P	for ficer roject ranking		
tot approach		Environmental	P Social	Economic	Loose Energetic	RANKING

Name	Protected Area	Scoring 12.50%	Forest area (ha)	Scoring 5.00%	Dam height (m)	Scoring 3.75%	Flooded area (km2)	Scoring 3.75%	Global scoring (25%)
Minh Lương	Hoang Lien Son - Van Ban Nature Reserve	0	0.00	100	36.5	0		0	20
Nậm Khắt	Hoang Lien Son - Van Ban Nature Reserve	0	0.00	100	8.0	78		0	32
Nậm Xây Luông		100	0.00	100	17.4	52		0	78
Nậm Xây Luông 3		100	0.00	100		0	0.173	99	, 85
Nậm Xây Luông 4		100	0.00	100	22.0	40		0	76
Nậm Xây Luông 5		100	0.00	100	36.5	0		0	70
Nậm Xây Nọi 2		100	0.00	100	19.5	47		0	77
Tu Trên		100	0.00	100	14.9	59	19	0	79

The scoring is determined by comparing each project with the remaining: from 0 (lowest score) to 100 (highest score).

The project with highest global score is the first one of the ranking

Name	Ethnic minorities	Scoring 12.50%	Cultivation (ha)	Scoring 6.25%	Rice crops (ha)	Scoring 6.25%	Global scoring (25%)
Minh Lương		100	32.75	0	32.75	0	50
Nậm Khắt	Dân tộc Dao	0	2.29	93	2.29	93	47
Nậm Xây Luông		100	3.55	89		0	72
Nậm Xây Luông 3		100	0.00	100		0	75
Nậm Xây Luông 4		100	0.00	100	0.00	100	100
Nậm Xây Luông 5		100	4.22	87	3.14	90	94
Nậm Xây Nọi 2		100	0.00	100	32.75	0	75
Tu Trên		100	0.00	100	2.29	0	75

coch	1		P	roject ranking			
ett approach		Enironnertal	P Social	Economic	Energetic	RANKING	

Name	Energy Unitary Cost (Mill VND/kWh)	Scoring 12.50%	CAPEX (Mill VND/kW)	Scoring 12.50%	Global scoring (25%)
Minh Lương	8.22	41	28.89	49	45
Nậm Khắt		0		0	0
Nậm Xây Luông	7.53	46	25.56	55	50
Nậm Xây Luông 3		0		0	0
Nậm Xây Luông 4	13.88	0	56.39	0	0
Nậm Xây Luông 5		0		0	0
Nậm Xây Nọi 2		0	1	0	0
Tu Trên	6.61	52	26.43	53	53
		lm fil	nportant to I data gaps		

Name	Capacity (MW)	Scoring 6.25%	Firm capacity (MW)	Scoring 12.50%	Working hours (h)	Scoring 6.25%	Global scoring (25%)
Minh Lương	28.0	100	5.0	68	3516	79	79
Nậm Khắt	7.5	19	0.9	8	4448	100	34
Nậm Xây Luông	13.0	40	1.4	16	3393	76	37
Nậm Xây Luông 3	8.0	21		0		0	5
Nậm Xây Luông 4	12.0	37	2.7	34	4063	91	49
Nậm Xây Luông 5	7.2	17	7.2	100		0	54
Nậm Xây Nọi 2	12.0	37	2.0	23	3748	84	42
Tu Trên	2.8	0	0.4	0	3996	90	22

Final ranking for a balanced scenario (25%-25%-25%)

Nomo	Environmental	Social	Economic	Energetic	Score	Donking
Name	(25%)	(25%)	(25%)	(25%)	(100%)	капкіпg
Nậm Xây Luông	78	72	50	37	59	1
Tu Trên	79	75	53	22	57	2
Nậm Xây Luông 4	76	100	0	49	56	3
Nậm Xây Luông 5	70	94	0	54	55	4
Nậm Xây Nọi 2	77	75	0	42	48	5
Minh Lương	20	50	45	79	48	6
Nậm Xây Luông 3	85	75	0	5	41	7
Nậm Khắt	32	47	0	34	28	8

The results may be eschewed from data gaps

Two potentially conflicting projects (both in FS stage) may be compared

Namo	Environmental	Social	Economic	Energetic	Score	Donking
Name	(10%)	(10%)	(40%)	(40%)	(100%)	Raliking
Minh Lương	20	50	45	79	56	1 (was 6)
Nậm Xây Luông	78	72	50	37	50	2 (was 1)
Tu Trên	79	75	53	22	45	3 (was 2)
Nậm Xây Luông 5	70	94	0	54	38	4 (was 4)
Nậm Xây Luông 4	76	100	0	49	37	5 (was 3)
Nậm Xây Nọi 2	77	75	0	42	32	6 (was 5)
Nậm Khắt	32	47	0	34	21	7 (was 8)
Nậm Xây Luông 3	85	75	0	5	18	8 (was 7)

Nậm Xây Luông 4 is still a better project than Nậm Xây Luông 3

Criteria and their weights can be adapted case-by-case according to local priorities and may be defined in cooperation with all stakeholders.

Closing remarks

- The current version of the National Small Hydropower GIS Database should be appraised, even if there is still margin for improvement on workability and overall presentation
- It is recommended to have an extended technical assistance period after the delivery of the National Small Hydropower GIS Database for revisions after a trial period
- The vast majority of data required for the implementation of the guidelines is already part of the National Small Hydropower GIS Database
- Attention should be given to data gaps, since they will affect project evaluation, and base maps, since they will help the planning decision process
- The implementation of certain parts of the proposed guidelines requires the use of auxiliary GIS software performed by users with basic to intermediate levels of proficiency, depending on the complexity of the task
- The guidelines include common principles and recommendations, and should be viewed as an outline for an assessment procedure as well as a pool of evaluation criteria
- Sufficient flexibility for implementation of the guidelines is given, in order to pay attention to regional differences and development priorities

THANK YOU FOR YOUR ATTENTION

jorge.andre@gestoenergy.com

www.gestoenergy.com