Groundwater Externalities with Endogenous Well Capacity Investment

Susan Stratton Sayre and Vis Taraz

Department of Economics, Smith College

Prepared for the IWREC Annual Conference
Washington, DC
September 2016
Motivation and Context

- Dramatic expansion of groundwater irrigation, especially in developing countries, has led to widespread concern about falling groundwater levels and the sustainability of irrigation.
- Economic literature (e.g. Gisser and Sanchez 1980) general concludes that the common property externality is small.
 - Expansion of irrigation has led to substantial reductions in poverty.
 - An important exception: Brill and Burness (1994)
 - If demand is growing over time, the common property externality can be substantial.
Role of “Entry” through Investment

- Expansion of groundwater irrigation driven by investment on two margins
 - Groundwater irrigated acreage in India increased 500% between 1960 and 2010
 - Movement from dug wells to tubewells (0% tubewells in 1960 to 40% tubewells in 2010)
 - Tubewells allow the extraction of more water from greater depths
- Expected overinvestment in addition to overexaction under common property
 - Liu et al (2014) evidence of over-entry in an experimental setting

Our Question
How large are the potential gains from optimally managing both groundwater extraction and on-going investment in new well technology?
Basic Model

- N farms that are either traditional (T) or modern (M)
 - Share modern is k_t
 - Farms differ only in their cost (χ_{nt}) of converting from T to M and their current status
- Instantaneous benefit of water use is $b_i(w_{it})$
- Instantaneous cost of water use is $w_{it}e_i(\bar{h} - h_t)$
- Maximum water use $L_i(h_t)$ depends on the water level and the well characteristics
 - Traditional farms cannot pump water more than 8m
- Groundwater levels evolve according to a “bathtub” model

\[
h_{t+1} = h_t + \frac{r - (1 - \theta)N(k_tw_{Mt} + (1 - k_t)w_{Tt})}{\phi}
\]
Optimal Management

A regulator optimally selects water use w_{it} on both farm types and the share of farms (γ_t) converting from traditional to modern agriculture in each period yielding the present-value Hamiltonian

$$H(t) = \delta^t \left[N \sum_k \kappa_{it} \left[b_i(w_i) - w_{it}e_i(\bar{h} - h_t) \right] - C_t(\gamma_t, k_t) \right] + \sum_{i=T,M} \mu_{it} (L_i(h_t) - w_{it})$$

$$+ \lambda_{kt+1} \gamma_t + \lambda_{ht+1} \frac{r - (1 - \theta)(k_t w_{Mt} + (1 - k_t) w_{Tt})}{\phi}$$

where $C_t(\gamma_t, k_t)$ is the total cost of $N\gamma_t$ farms converting at time t, given that the Nk_t cheapest farms have already converted.
Common Property

- Farmers take h as given, choose w_{nt} and investment time τ_n
- Water use problem Lagrangian
 \[b_i(w_{it}) - w_i e_i (\bar{h} - \hat{h}_t) + \nu_{it} \left(L_i (\hat{h}_t) - w_{it} \right) \]
 - Solution $w_i^{*CP} (\hat{h}_t)$ yielding optimized value $B_i^{*CP} (\hat{h}_t)$
- Farmer n’s investment problem is
 \[
 \max_{\tau=1, \ldots, \infty} \sum_{t=0}^{\tau} \delta^t B_T^{*CP} (\hat{h}_t) - \delta^\tau \chi_n \tau + \sum_{t=\tau+1}^{\infty} \delta^t B_M^{*CP} (\hat{h}_t)
 \]
 - Local optimality condition requires investment at τ to be preferred to investment at $\tau + 1$ and $\tau - 1$
- Farmers have rational expectations about future water levels so
 \[
 \hat{h}_{t+1} = \hat{h}_t + \frac{r - (1 - \theta) N (k_t w_M^{*CP} + (1 - k_t) w_T^{*CP})}{\phi}
 \]
Comparing Solutions

- Water use on type i satisfies
 \[
 \text{CP: } \frac{\partial b_i}{\partial w_i} (w^\ast_{i \text{CP}}) - e_i \left(\bar{h} - \hat{h}^\ast_{CP} \right) = \nu_{it}
 \]
 \[
 \text{OPT: } \frac{\partial b_i}{\partial w_i} (w^\ast_{i \text{OPT}}) - e_i \left(\bar{h} - h^\ast_{OPT} \right) = \frac{\mu_{it}}{\delta^t N \kappa_i (k^\ast_{OPT})} + \frac{\lambda_{ht+1} (1 - \theta)}{\phi}
 \]

 Marginal Private Benefit = Shadow Value of Capacity Constraint (+ User Cost of Water)

- Highest cost farm that invests in period t satisfies
 \[
 \text{CP: } \delta \Delta B^\ast_{CP} \left(h_{CP}, t+1 \right) = \chi_{nt} - \delta \chi_{nt+1}
 \]
 \[
 \text{OPT: } \delta \Delta B \left(w_{t+1}^\ast_{OPT}, h_{t+1}^\ast_{OPT} \right) = \chi_{nt} - \delta \chi_{nt+1}
 \]
 \[
 + \lambda_{ht+2} N \frac{(1 - \theta)}{\phi} \left(w^\ast_{OPT_{Mt+1}} - w^\ast_{OPT_{Tt+1}} \right)
 \]

 Discounted Gain Next Period = Reduction in PV Cost by Waiting (+ User Cost of Water \times Extra Water Use)
Case Study: Odisha (Orissa), India

- CWGB estimates current use is 25% of renewable use
- Low penetration of tubewells and submersible pumps (~5%)
- Active encouragement of irrigation expansion
- Renewable flows not sufficient to sustain full conversion
Model Conditions

Traditional Farms
- Rice grown during kharif only
- Water consumption \(\sim 3,000\text{ m}^3/\text{ha}\)
- Dug wells & centrifugal pumps
 - Limits on extraction increase with depth
 - Max depth is 8m

Modern Farms
- Rice grown during kharif and rabi
- Water consumption (total) \(\sim 15,000\text{ m}^3/\text{ha}\)
- Physical limits on pumping not binding
- Conversion costs roughly 7 years of profit difference
Specific Parameters

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>δ</td>
<td>Discount factor 0.95</td>
</tr>
<tr>
<td>$\bar{h} - h_0$</td>
<td>Initial pumping lift 2m</td>
</tr>
<tr>
<td>ϕ_T</td>
<td>Inverse demand intercept (T)</td>
</tr>
<tr>
<td>ψ_T</td>
<td>Inverse demand slope (T)</td>
</tr>
<tr>
<td>ϕ_M</td>
<td>Inverse demand intercept (M)</td>
</tr>
<tr>
<td>ψ_M</td>
<td>Inverse demand slope (M)</td>
</tr>
<tr>
<td>r</td>
<td>Natural inflow per hectare 4,680 m3/ha</td>
</tr>
<tr>
<td>θ</td>
<td>Return flow coefficient 35%</td>
</tr>
<tr>
<td>ϕ</td>
<td>Water released per 1m drop in aquifer 1,600 m3/ha/m</td>
</tr>
<tr>
<td>e_T</td>
<td>Energy cost per m on traditional farms 0 Rs/m3/m</td>
</tr>
<tr>
<td>e_M</td>
<td>Energy cost per m on modern farms 12 Rs/m3/m</td>
</tr>
<tr>
<td>ν_0</td>
<td>Initial common investment cost per ha 13,555 Rs/ha</td>
</tr>
<tr>
<td>α</td>
<td>Annual percentage decline in ν 10%</td>
</tr>
<tr>
<td>μ</td>
<td>Mean of χ distribution 25,394 Rs/ha</td>
</tr>
<tr>
<td>σ</td>
<td>Standard deviation of χ distribution 10,000 Rs/ha</td>
</tr>
<tr>
<td>k_0</td>
<td>Initial share modern 5%</td>
</tr>
<tr>
<td>$L_T(h_0)$</td>
<td>Dug well extraction limit 3,000 m3/ha</td>
</tr>
</tbody>
</table>
Preliminary Results

NPV of water benefits roughly doubles from ~13,000 Rs/ha to ~26,000 Rs/ha under optimal management.

![Graphs showing NPV increase under optimal management and common property.](image-url)
Impact on Different Farms

![Graph showing impact on different farms.]

The top graph displays the NPV of benefits (kRs/ha) against investment cost percentile. The bottom graph shows the percentage gain (loss) over common property against investment cost percentile.
Conclusions and Extensions

- Benefits of implementing optimal management can be substantial when there is endogenous investment in irrigation capacity through changes in well technology
 - Common property: farms with high investment costs driven to dryland farming
 - Optimal management: investment and extractions kept low enough to maintain depths below 8m
- Equity implications
 - In our examples, farms on the two ends of the investment cost distribution benefit from management while farms in the middle are hurt
Siwan Anderson.
Caste as an impediment to trade.

Asian Development Bank.
ADB Loan to Modernize Irrigation and Improve Water Management in Odisha, August 2016.

Reena Badiani, Katrina K Jessoe, and Suzanne Plant.
Development and the environment: the implications of agricultural electricity subsidies in India.

Anik Bhaduri, Upali Amarasinghe, and Tushaar Shah.
An analysis of groundwater irrigation expansion in India.

Thomas C Brill and H Stuart Burness.
Planning versus competitive rates of groundwater pumping.

Nicholas Brozović, David L Sunding, and David Zilberman.
On the spatial nature of the groundwater pumping externality.

H Stuart Burness and Thomas C Brill.
The role for policy in common pool groundwater use.

Oscar R Burt.
Optimal resource use over time with an application to ground water.
Central Ground Water Board.
pages 1–81, July 2014.

Central Groundwater Resources of India.
Dynamic ground water resources of india, 2004.

Ujjayant N Chakravorty and E Somanathan.
Drilling in the drought: The industrial organization of groundwater.
2014.

Department of Agriculture, Government of Odisha.
Status of Agriculture in Odisha, July 2016.

Ram Fishman.
More uneven distributions overturn benefits of higher precipitation for crop yields.

A Foster and S Sekhri.
Can expansion of markets for groundwater in rural india decelerate depletion of groundwater resource?
Mimeographed, Brown University, Providence, Rhode Island, 2912, 2008.

Vasant P Gandhi, NV Namboodiri, et al.
Groundwater irrigation in India: Gains, costs, and risks.
Indian Institute of Management Ahmedabad, 2009.

Héctor Garduño and Stephen Foster.
Sustainable groundwater irrigation approaches to reconciling demand with resources.
GW-MATE Strategic Overview Series, 4, 2010.

ICRISAT. Meso level data for India: 1966-2011, Collected and compiled under the project on Village Dynamics in South Asia, 2015.

BM Jha and SK Sinha. Towards better management of ground water resources in India.

References IV

Strategic entry and externalities in groundwater resources: Evidence from the lab.

Ministry of Water Resources.

A Mukherji, S Rawat, and T Shah.
Major Insights from India’s Minor Irrigation Censuses: 1986-87 to 2006-07.
Economic & Political Weekly, 2013.

Sandra Postel.
Pillar of sand: can the irrigation miracle last?

H Raghunath.
ground water: hydrogeology, ground water survey and pumping tests, rural water, 1982.

V Ratna Reddy.
Costs of resource depletion externalities: a study of groundwater overexploitation in andhra pradesh, india.

Judith Renner.
Area equipped for irrigation at record levels, but expansion slows.

Matthew Rodell, Isabella Velicogna, and James S Famiglietti.
Satellite-based estimates of groundwater depletion in india.
Sheetal Sekhri.
Sustaining groundwater: Role of policy reforms in promoting conservation in India.

Sheetal Sekhri.

Sheetal Sekhri.

Sheetal Sekhri.

Farhed A Shah, David Zilberman, and Ujjayant Chakravorty.

Tushaar Shah.

Tushaar Shah, O P Singh, and Aditi Mukherji.
Tushaar Shah, Om Prakash Singh, and Aditi Mukherji.
Some aspects of south Asia’s groundwater irrigation economy: analyses from a survey in India, Pakistan, Nepal Terai and Bangladesh.

PS Vijay Shankar, Himanshu Kulkarni, and Sunderrajan Krishnan.
India’s groundwater challenge and the way forward.

Watershed externalities, shifting cropping patterns and groundwater depletion in Indian semi-arid villages: the effect of alternative water pricing policies.

Stefan Siebert, Petra Döll, Jippe Hoogeveen, J-M Faures, Karen Frenken, and Sebastian Feick.
Development and validation of the global map of irrigation areas.

Stefan Siebert, Jacob Burke, Jean-Marc Faures, Karen Frenken, Jippe Hoogeveen, Petra Döll, and Felix Theodor Portmann.
Groundwater use for irrigation—a global inventory.