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ABSTRACT 

Recent research examines some “deep roots” of world development, such as geography, 

climate, pathogen burden, and genetic diversity. This paper extends the literature in several 

ways. First, we focus on adaptations to particular climatic driver (ultraviolet exposure) and 

supply new data about the country-level frequencies of a particular genetic polymorphism that 

responds to climate and disease and in turn affects human traits and values. This gene and others 

have been studied at the level of individuals; we connect the country-level frequencies to 

outcomes such as per capita income, governance, disability-adjusted life years, fertility, and self-

reported happiness. Second, we employ a novel identification strategy, and our results are robust 

to a variety of econometric challenges. Third, we explore the uses and misuses of findings about 

genes and other deep roots of development.  
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INTRODUCTION 

Over centuries and millennia, geography, climate, and human genetic characteristics have 

interacted in ways that have implications for development outcomes today. Many infectious 

diseases, for example, breed more readily in hot, humid climates. These diseases affect human 

populations through migration and adaptation (both genetic and environmental). The evolution of 

geography-climate-gene complexes can modify physiological traits, such as skin pigmentation or 

the ability to breathe easily at high altitudes. They also modify behavioral suites that influence 

psychological traits, social interactions, and cultural repertoires; and these in turn may affect 

development outcomes.  

These possibilities are difficult to specify and estimate. “Although the promise of genomics 

and related high-throughput techniques to study human evolution is high, human biology, 

evolutionary history, and extant population structure are all intimidatingly complex,” note 

Richerson et al. (2010). “Not every problem will be quickly solved, and many analytical 

improvements are needed.” Theories of international development do not provide accepted 

models for how various outcomes vary with geographic, climatic, and genetic variables (Liu et 

al. 2012; Spolaore & Wacziarg 2013). From economic well-being to governance to good health, 

the mapping of measures onto concepts is contentious; and across the many variables that 

plausibly matter, longitudinal data range from weak to absent. Even if we had excellent data, 

estimating dynamic relationships across times and places would confront challenges ranging 

from heterogeneity to nonstationarity (Eberhardt & Teal 2011; Teal et al. 2014). 

As a result of these problems, estimating a full causal model is impossible. At best we can 

mark out some empirical patterns and apparent exceptions to them. We are fortunate to have new 
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data on a particular genetic adaptation to climate and disease, which enables us to build a web of 

associations that culminate in testable and perhaps actionable links to development outcomes.  

This paper presents new results about genetic variables that may account for cross-country 

variation in various measures of world development. One of us (Napolioni) assembled existing 

studies of the ACP1 genetic polymorphism to create an incomplete but path-breaking country-

level dataset. ACP1 is one of many genes that adapt to ultraviolet radiation and to pathogen 

burdens, and these adaptations in turn have behavioral consequences. To our surprise, we find 

that ACP1 frequencies are significantly related to national outcomes ranging from GDP per 

capita to type and quality of governance to measures of national “competitiveness” to health to 

fertility to measures of satisfaction with life—in other words, ACP1 frequencies are related to 

many dimensions of “development.”  

As with all econometric studies of development, two questions arise. Are the correlations a 

sign of causation or simply an artifact? We use exposure to ultraviolet radiation as an instrument 

in assessing the relationship between ACP1 frequencies and development outcomes. We carry 

out a variety of tests of the satisfaction of the exclusion restriction, with positive results. The 

effects of the ACP1 variable are not explainable by reverse causation or the influence of some of 

the usual variables in studies of long-run development. But as we will explain, ACP1 frequencies 

are no doubt proxies for other genes that also respond to climate and disease—and possibly for 

social and cultural adaptations as well. No one is stating that a particular gene has a direct effect 

on development. Understanding what “significant genetic effects” mean and do not mean is a 

key point of this paper. 

A second question is what it implies (and does not imply) to find that one or another 

development outcome is “significantly explained” by deep roots such as climate, geography, 
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disease burdens, and genes. Since these deep roots are not under a country’s control, such 

findings may invite a degree of fatalism. As more and more genetic information becomes 

available, we expect an increasing need to understand what statistical regularities imply and do 

not imply. In particular, understanding these deep roots of development can be helpful for 

designing adaptive policies and for finding exceptions and learning from them.  

A SCHEMATIC MODEL 

Recent work in international development examines deep roots such as geography, climate, 

parasite stress, and genetic endowments (Spolaore & Wacziarg 2013). What Galor (2011) calls 

“unified growth theory” goes beyond analyzing standard economic and institutional variables in 

models of growth covering years and decades. These scholars and others also consider factors 

that operate over centuries and millennia—factors that, their research suggests, are powerful 

predictors today as well. Thornhill & Fincher (2014) review a fast-moving, multidisciplinary 

literature showing how long-term genetic and cultural adaptations to pathogen burdens predict a 

variety of current outcomes from health to education to politics. 

Recent theories investigate some of these links: 
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Figure 1 

How Deep Roots May Affect Development Outcomes 

 

                                                                               

  GEOGRAPHY AND CLIMATE TO PATHOGENS AND DISEASE 

Geography and climatic conditions create differences in disease environments (for a thorough 

review, see Thornhill & Fincher 2014). 

In this paper we focus on a particular driver, exposure to ultraviolet radiation. UVR exposure 

lowers folate, increases oxidative stress, and increases immune suppression (switch from pro- to 

anti-inflammatory immune responses). The “faster evolution” hypothesis (Wright et al. 2003) 

argues that higher UVR near the equator increases evolutionary rates and species production 

through shorter generation times and faster mutation rates. One consequence: more and more 

rapidly evolving pathogens (Keesing et al. 2010). 
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  FROM DISEASE ENVIRONMENTS TO HUMAN ADAPTATIONS 

Different disease environments lead to three responses:  migration; genetic adaptation 

(Fumagalli et al. 2011); and what Thornhill and Fincher (2015), following Schaller (2006), call 

“behavioral immune systems” in the form of cultural values and behaviors.  

In this paper we take advantage of new data we have assembled on the country-level 

frequencies of several genetic polymorphisms that respond to the effects of lower folate, higher 

oxidative stress, increased immunosuppression, and more pathogens. We focus on Acid 

phosphatase controlled by locus 1 (ACP1), an enzyme found in the cytoplasm of many tissues. 

ACP1 seems to adapt to UVR exposure in order to reduce oxidative stress (Apelt et al. 2009). 

ACP1 mediates the shift from pro-inflammatory to anti-inflammatory bias, and carriers of 

ACP1*B are less susceptible to heat stress and tropical diseases (Bottini et al. 2009). 

These adaptations of ACP1 have side effects in terms of various physical ailments, personality 

characteristics, and mental illnesses that differentially affect people carrying different ACP1 

genotypes (Willour et al. 2012; Bottini et al. 2002d; Napolioni et al. 2014). 

We hypothesize that ACP1 allele frequencies also capture the effects of other genes that adapt 

to UVR and disease. Annex 1 provides more details about UVR, ACP1, and two pro- and anti-

inflammatory cytokines, interleukin-6 (IL6) and interleukin-10 (IL10). 

We also analyze Ashraf and Galor’s (2013) measure of genetic diversity within countries. 

Ancestry-adjusted genetic diversity gauges the expected heterozygosity between two randomly 

selected people in a country using allelic frequencies for 783 microsatellite loci, after adjusting 

for ancestry and migration.2  

2 “The index of genetic diversity for contemporary national populations accounts for their ethnic compositions 

resulting from population flows among countries in the post-1500 era, the genetic diversity of the precolonial 
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Genetic diversity responds in a complicated way to climate, disease, and migration. Ashraf 

and Galor (2013) show that the farther a genetically similar population has migrated from the 

original human locus in East Africa, the lower its genetic diversity. The greatest diversity 

remains in the high UVR areas of Africa, but because of the serial founder effect, migrating 

populations have less and less diversity as they move farther away.3  

  FROM HUMAN ADAPTATION TO DIFFERENCES IN TRAITS AND VALUES 

Migration, genetic adaptation, and cultural adaptation lead to variations across countries in 

traits and values (Hibbs and Olsson 2004; Putterman and Weil 2010; Chanda, Cook & Putterman 

2014; Maseland 2013; Spolaore & Wacziarg 2015). “According to the parasite-stress theory, 

analytical cognition is optimal when parasite stress is reduced and therefore there is less need to 

construct and maintain strong and permanent in-group affiliations that function to offset the 

negative reproductive consequences from parasites” (Fincher & Thornhill 2012: 109). Parasite 

burdens are strongly associated with lower measures of intelligence (Eppig et al. 2010). 

Individualism as a cultural value decreases in proportion to the group’s typical pathogen burden 

(Chiao & Belinsky 2010; Way & Lieberman 2010; Cashdan & Steele 2013; Terrizzi et al. 2013). 

Pathogen burdens increase in-group favoritism and out-group negativity (Chiao & Blizinsky 

2010) and promotes adherence to rigid behavioral sanctions (Cashdan & Steele 2013). In turn, 

ancestral population of each component ethnic group, and the genetic distances between these ancestral 

populations… [In addition, it] also accounts for the diversity arising from differences between subnational ethnic 

groups… (Ashraf & Galor 2013): 32). 

3 Some of the groups farthest away from Africa happen to have settled in high UVR areas, and their low genetic 

diversity means that the worldwide correlation today between heterozygotic diversity and UV exposure is not 

statistically significant. 
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compliance with these sanctions in disease-endemic regions is reinforced by socializing children 

to obedience rather than autonomy (Fincher et al. 2008). This constellation of tendencies reduces 

the potential for innovation and trust. 

  FROM TRAITS AND VALUES TO DEVELOPMENT OUTCOMES 

These differences in traits and values affect contemporary economic and political 

development (among many studies, Gorodnichenko & Roland 2011; Hofstede 2011; Maseland 

2013). Ashraf and Galor (2013) theorize, with empirical support, that there is an optimal amount 

of genetic diversity at the country level. Too little genetic diversity, they suggest, and there is not 

enough variety to stimulate competition and innovation. But too much diversity “raises the 

likelihood of disarray and mistrust, reducing cooperation and disrupting the socioeconomic 

order. Higher diversity is therefore associated with lower productivity, which inhibits the 

capacity of the economy to operate efficiently relative to its production possibility frontier” 

(Ashraf & Galor 2013: 3). 

CHALLENGES TO ESTIMATION 

Specifying and estimating these relationships runs into a host of conceptual, measurement, 

and statistical challenges. Unfortunately, our measures are incomplete and partial. We do not 

have data on the pathogen burden at historical dates relevant for evolutionary change; today’s 

data on infectious disease burden have already benefited from the epidemiological transition that 

began around 1950 (Cook 2015). The effects of heat on mortality have changed greatly over the 

last century thanks to innovations such as air conditioning (Barreca et al. 2016). Our empirical 

work begins with the connection between UVR exposure and frequencies of the ACP1 alleles 

across countries populations. We hypothesize that (1) our measure of UVR exposure has no 
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direct, contemporary causal connection with development outcomes such as per capita income or 

political rights4 and (2) geographic patterns of UVR exposure have not changed over time. Based 

on studies of individuals, we hypothesize that over time UVR affects ACP1 and other genes, 

whose adaptations in turn affect many traits and values (to name two, IQ and individualism), 

which in turn have implications for many development outcomes.  

We use UVR exposure as an instrument to help assess the relationship between ACP1 

frequencies and development outcomes. We carry out a variety of tests of the satisfaction of the 

exclusion restriction, with positive results. In multiple analyses controlling for a variety of other 

variables, we find that ACP1 frequencies are significantly related to national outcomes ranging 

from GDP per capita to type and quality of governance to measures of national competitiveness 

to health to fertility to measures of satisfaction with life. Then we will consider what the results 

mean—and do not mean. 

MEASURES AND DATA 

GENETIC DATA 

Frequencies of ACP1 Alleles 

We have assembled data on the frequencies of ACP1*A, ACP1*B, and ACP1*C alleles in the 

populations of 120 countries. The data are a compilation of 153,090 global genotypes, which we 

believe is the largest such genetic undertaking ever. The data sources and compilation of the 

ACP1 measure is detailed in Annex 2. Our research represents the first time country-level ACP1 

frequencies have been incorporated into studies of international development.  

4 But see Andersen et al. 2012 on the negative effects of high UVR on eyesight. 
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Among the 120 countries, the mean frequency of ACP1*A is 24.0%, ACP1*B is 73.8%, and 

ACP1*C is 2.2%. Figures 2 a-c show the distributions of the frequencies. Figure 4 maps the 

frequencies of ACP1*B. 

Figures 2 a-c 

Country Frequencies of ACP1*A, ACP1*B, and ACP1*C 

 

Figure 3 shows the frequencies of ACP1*B in countries around the world.  

Figure 3 

Frequencies of ACP1*B  

 

Note: N = 120 countries. No data are available for countries in white. 
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Frequency of IL6 and IL10 Alleles 

We have also assembled data on the frequencies of two pro- and anti-inflammatory cytokines, 

interleukin-6 (IL6-174G) and interleukin-10 (IL10-1082G). These, too, respond to disease 

burden and UV exposure and, in turn, are associated with some relevant behavioral and social 

outcomes (see Annexes 1 and 2 for details). Because we have data on fewer countries, we 

include only a few correlations in the analyses below and do not include these variables in the 

multivariate analyses.  

Heterozygotic Diversity 

As noted, we also use a measure of genetic diversity at the country level, created by Ashraf 

and Galor (2013).  

GEOGRAPHY AND CLIMATE 

Among the many variables of geography and climate we examine, particularly noteworthy is 

the World Health Organization-derived ultraviolet (B) exposure rating.5  These data have not 

been used in studies of world development (Andersen et al. 2012, the source of these data, 

remains an exception). Across 184 countries, the average of this rating is 202.0 and the standard 

deviation is 76.8, with a minimum of 31.8 (Iceland) and a maximum of 298.5 (Ethiopia). Figure 

4 shows the distribution of country means of UVR exposure. 

5 The rating reflects biological exposure per square meter (BD/m2), with the continuous measure scaled by dividing 

each averaged ultraviolet radiation dose by half of the interquartile range (Herman et al., 1999). To confirm the 

salience of the Andersen et al. (2012) measure of UVR exposure, we compared it with an annual average ultraviolet 

index for countries based on NASA satellite recordings. For the 23 countries for which both measures are available, 

the correlation is 0.91. 
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Figure 4 

Country-level Index of Ultraviolet (B) Exposure 

 

We include geographical and climatic data assembled by Ashraf and Galor (2013) on 

measures of geography and climate such as temperature, rainfall, elevation, the percentage of a 

country’s land that is arable, an index of a country’s average soil quality (including such aspects 

as soil carbon density and pH), and mean distance in the country from the nearest waterway.  

Finally, we follow Ashraf and Galor (2013) in using a measure of the time since a country 

experienced the Neolithic transition from hunter-gatherers to settled agriculture, adjusted for the 

ancestry of those now living in that country.  

DEVELOPMENT OUTCOMES 

We examine gross national income (GNI) per capita in 2014, adjusted for purchasing power 

parity. We also investigate measures of democratic rights, perceptions of corruption, and an 

index of global competitiveness. We analyze the World Health Organization’s measure 

disability-adjusted life years (age-standardized per 100,000 people), where higher numbers are 

worse. We also examine fertility and citizens’ self-reported happiness. 
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DATA ANALYSIS 

Table 2 displays correlations among the various outcomes, ultraviolet radiation, ACP1*B, 

IL6-174G, and IL10-1082G.  

Table 2 

Correlation Matrix among Some of the Variables 

 ACP1*B  IL6-
174G 

IL10-
1082G 

UVR lnGNIpc Rights Corrupt GCI lnDALY lnFert Happy 

ACP1*B  1           
IL6-
174G 

0.78 
(68) 

1          

IL10-
1082G 

-0.51 
(58) 

-0.82 
(58) 

1         

UVR 0.79 
(119) 

0.79 
(76) 

-0.53 
(66) 

1        

lnGNIpc -0.62 
(115) 

-0.64 
(72) 

0.37 
(62) 

-0.59 
(170) 

1       

Rights 0.33 
(119) 

0.53 
(76) 

-0.35 
(65) 

0.59 
(183) 

-0.45 
(170) 

1      

Corrupt -0.49 
(115) 

-0.53 
(76) 

0.37 
(66) 

-0.52 
(166) 

0.71 
(150) 

-0.70 
(1650 

1     

GCI -0.57 
(102) 

-0.45 
(69) 

0.13 
(650 

-0.57 
(138) 

0.82 
(132) 

-0.44 
(1370 

0.82 
(1380 

1    

lnDALY 0.64 
(116) 

0.60 
(73) 

-0.30 
(64) 

0.60 
(180) 

-0.81 
(167) 

0.52 
(180) 

-0.67 
(162) 

-0.74 
(135) 

1   

lnFert 0.64 
(119) 

0.61 
(76) 

-0.09 
(66) 

0.63 
(184) 

-0.78 
(170) 

0.48 
(183) 

-0.56 
(166) 

-0.63 
(138) 

0.81 
(180) 

1  

Happy -0.48 
(102) 

-0.50 
(71) 

0.29 
(61) 

-0.46 
(142) 

0.79 
(135) 

-0.53 
(141) 

0.69 
(142) 

0.72 
(1250 

-0.73 
(139) 

-0.56 
(142) 

1 

Note: Variables are defined in the text and Annex 1. Corrupt is freedom from corruption. For Rights and lnDaly, lower numbers 
are better. GCI is the Global Competitiveness Index, where higher numbers are better. 

As in all econometric analyses of world development, the interconnections among many 

possible causal variables make the estimation of independent effects difficult (Hausmann et al., 

2008: 7-8; see also Manski 2008 and Cohen-Cole, Durlauf & Rondina 2012). Saliman (2012) 

notes how many variables would have to be taken into account in a thorough study of all the 

hypotheses about the causes of economic development—and it is impossible with a small data 

set: “The data set we consider contains 88 countries and a list of 67 potential explanatory 

variables, giving 267 different possible subsets of regressors to include in our model. All of these 
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variables can reasonably be expected to influence economic growth, and we cannot be sure a 

priori which subset of variables we should use.”6   

Facing these difficulties, our analysis has a few advantages. We build on theoretical 

hypotheses based on both genetic studies of individuals and long-term economic analyses of the 

deep roots of development. The hypothesized theoretical mechanism lends itself directly to an 

instrumentation strategy. Since the ACP1 genetic polymorphism responds to variations in UVR 

exposure, which is an expression of geographic location, UVR exposure is a promising 

instrument. As always, one must worry about the exclusion restriction: does UVR exposure 

exercise a direct influence on development today? In a companion paper focusing on GDP per 

capita in 2000, we thoroughly explore the UVR instrument, with positive results (Fedderke et al. 

forthcoming). In this paper, we confirm these findings with a broader set of outcomes and focus 

on the implications.  

INCOME PER CAPITA 

The multivariate analyses in Table 3 show that the frequency of ACP1*B is negatively related 

to gross national income per capita, with or without instrumentation. Note also that just a few 

variables measuring certain characteristics of a country’s genetic characteristics, climate, and 

geography—factors that might be considered beyond a country’s control—statistically explain 

over half the variance in per capita incomes. 

6 A study of social indicators and economic development makes a related point: “The danger of more and more 

studies using some or all of the social and political indicators is that ‘results’ will emerge which are not robust. With 

other indicators and other specifications, as we have seen, one or another variable may show up as more important 

than another” (Fedderke and Klitgaard 1998). 
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Table 3   

Explaining Log Per Capita GNI in 2014 (PPP) with Certain Genetic, Climatic, and Geographic 

Variables 

ln GNIpc 2014 (1) OLS (2) OLS (3) OLS (4) OLS (5) IV (6) IV 

Frequency of ACP1*B allele -7.69*** 
(0.91) 

  -4.35*** 
(1.04) 

-9.07*** 
(1.71) 

-4.95*** 
(1.62) 

Predicted genetic diversity (ancestry 
adjusted) 

 385.43*** 
(128.95) 

112.62 
(115.98) 

100.44 
(118.40) 

13.67 
(126.67) 

186.50* 
(109.050 

Predicted genetic diversity squared 
(ancestry adjusted) 

 -274.14** 
(91.10) 

-74.94 
(82.55) 

-71.78 
(84.44) 

-13.09 
(90.17) 

-139.51* 
(78.64) 

Log Neolithic transition timing (ancestry 
adjusted) 

 1.40*** 
(0.20) 

-0.11 
(0.29) 

0.14 
(0.31) 

-0.17 
(0.33) 

0.49* 
(0.27) 

Log precipitation   -0.27** 
(0.12) 

-0.36*** 
(0.13) 

-0.31** 
(0.14) 

-0.27** 
(0.12) 

Log percentage of arable land   -0.133 
(0.084) 

-0.141 
0.096 

-0.21** 
(0.10) 

-0.20** 
(0.10) 

Land suitable for agriculture   -0.33 
(0.45) 

-0.22 
(0.49) 

-0.22 
(0.51) 

-0.30 
(0.39) 

Log Mean distance to nearest waterway   -0.30*** 
(0.07) 

-0.31*** 
(0.08) 

-0.31*** 
(0.08) 

-0.18** 
(0.08) 

Log life expectancy in 1940      1.91*** 
(0.38) 

Sub-Saharan Africa dummy variable   -1.81*** 
(0.37) 

-1.08*** 
(0.44) 

-0.45 
(0.49) 

0.41 
(0.42) 

Constant 14.74*** 
(0.68) 

-138.02** 
(45.17) 

-30.72 
(41.00) 

-19.86 
(42.09) 

15.70 
(42.30) 

-58.83 
(36.98) 

Number of countries 115 146 138 105 105 61 
Root mean squared error 0.97 1.02 0.84 0.78 0.82 0.44 
Adjusted R2 0.38 0.35 0.55 0.61 0.57 0.76 

Standard errors in parentheses. * = p ≤ 0.10. **= p ≤ 0.05. *** = p ≤ 0.01, In column (5) ACP1*B is instrumented with ultraviolet B 

exposure. Durbin and Wu-Hausman tests reject exogeneity (p<0.01). Wald test rejects the hypothesis that the instrument is weak. 

We performed a variety of econometric checks for endogeneity and robustness. ACP1*B 

remains significant and important after including variables for genetic diversity, geography, 

rainfall, the timing of the Neolithic transition, and life expectancy in 1940 (before the 

epidemiological revolution that began about a decade later)7. In other analyses not reported here, 

we included in the IV regressions other strong covariates of UVR exposure, such as WHO’s 

estimate of each country’s burden of infectious diseases in 2004. ACP1 remains statistically 

7 Cook (2015) develops this last variable and uses it as a proxy for the disease environment before the major 

improvements made possible by modern health care and prevention. 
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significant and practically important. Below we discuss what other factors besides this single 

gene the variable ACP1*B may be picking up; the point for now is that the effect we are seeing 

is not removed by including many other deep roots of economic development. 

GOVERNANCE 

Many measures of governance exist, and their meaning and use are debated (Rothstein, 2011; 

Holmberg, Rothstein & Nasiritousi 2012; Fukuyama, 2013). We examine three measures: 

• Freedom House assesses political rights and civil liberties on two scales from 1 (best) to 

7 (worst). We combined the two into a measure we call “rights,” whose mean for 183 

countries is 6.68 and standard deviation is 3.92. The data are from 2014.  

• Transparency International combines many sources of information to rate countries from 

0 to 100 on perceptions of their “freedom from corruption” (CPI). For 166 countries in 

2014, the mean is 43.59 and the standard deviation is 19.68. 

• The World Economic Forum’s Global Competitiveness Report 2015-2016 includes 111 

variables in 12 clusters. From these it derives an overall index of a country’s 

competitiveness (GCI). For 138 countries, GCI ranges from a low of 2.84 to a high of 

5.76; mean = 4.22, standard deviation = 0.67). Even though only about 20 of the 111 

variables are related to the quality of government institutions, GCI and CPI are correlated 

0.82. 

We examined these outcomes in a similar fashion to the analyses of GNI per capita. Table 4 

summarizes the results of the corresponding IV analyses. ACP1*B again is a highly significant 

predictor. Higher frequencies of ACP1*B are associated with worse governance, with or without 

instrumentation using UVR exposure.  
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Table 4   

Explaining Governance with Certain Genetic, Climatic, and Geographic Variables 

 (1) Political 
Rights and 
Civil 
Liberties 
(IV) 

(2) Political 
Rights and 
Civil 
Liberties 
(IV) 

(3) Freedom 
from 
Corruption 
(IV) 

(4) Freedom 
from 
Corruption 
(IV) 

(5) Global 
Competitiveness 
Index (IV) 

(6) Global 
Competitiveness 
Index (IV) 

Frequency of ACP1*B allele 36.19*** 
(7.45) 

13.64* 
(8.05) 

-247.64*** 
(47.11) 

-178.94*** 
(41.06) 

-6.85*** 
(1.25) 

-5.31*** 
(1.42) 

Predicted genetic diversity 
(ancestry adjusted) 

-97.08 
(557.19) 

-10.81 
(547.78) 

7540.30* 
(4109.71) 

8590.95*** 
(2793.05) 

-12.39 
(91.21) 

350.32*** 
(97.25) 

Predicted genetic diversity 
squared (ancestry adjusted) 

-93.57 
(396.62) 

31.58 
(395.05) 

-5509.81* 
(2913.27) 

-6351.05*** 
(2014.30) 

5.78 
(64.94) 

-259.46*** 
(70.18) 

Log Neolithic transition timing 
(ancestry adjusted) 

0.24 
(1.42) 

-1.05 
(1.32) 

-7.45 
(8.15) 

-9.26 
(6.72) 

-0.23 
(0.24) 

-0.22 
(0.24) 

Log precipitation -0.56 
(0.60) 

-0.01 
(0.60) 

-4.18 
(4.10) 

-8.53*** 
(3.04) 

0.03 
(0.10) 

-0.23** 
(0.11) 

Log percentage of arable land 0.92** 
(0.45) 

0.60 
(0.51) 

-6.40** 
(2.83) 

-6.69*** 
(2.58) 

-0.06 
(0.08) 

-0.04 
(0.09) 

Land suitable for agriculture -3.10** 
(2.22) 

-1.53 
(1.95) 

-4.59 
(14.69) 

5.64 
(9.97) 

-0.583 
(0.362) 

-0.10 
(0.34) 

Log mean distance to nearest 
waterway 

1.03*** 
(0.35) 

1.18*** 
(0.38) 

-5.26** 
(2.20) 

-7.51*** 
(1.93) 

-0.05 
(0.06) 

-0.142** 
(0.066) 

Log life expectancy in 1940  -7.64*** 
(1.85) 

 36.02*** 
(9.41) 

- 
 

1.07*** 
(0.33) 

Sub-Saharan Africa dummy 
variable 

-4.04* 
(2.14) 

-4.43** 
(2.13) 

22.28 
(13.88) 

11.41 
10.86 

0.03 
(0.35) 

0.40 
(0.38) 

Constant -3.99 
(199.35) 

27.70 
(185.98) 

-1612.35 
(1389.83) 

-2738.00*** 
(948.27) 

17.52 
(32.66) 

-110.81*** 
(33.10) 

Number of countries 109 64 83 64 99 63 
Root mean squared error 3.61 2.25 18.41 11.48 0.57 0.40 
Adjusted R2 0.13 0.57 0.26 0.72 0.28 0.64 

Dependent variables are indicated in the column headings. Standard errors are in parentheses. * = p ≤ 0.10. **= p ≤ 0.05. *** = p ≤ 0.01. In 

all three equations, ACP1_B is instrumented with ultraviolet B exposure. Durbin and Wu-Hausman tests reject exogeneity (p<0.01). 

Wald test rejects the hypothesis that the instrument is weak (p<0.01). 

OTHER DEVELOPMENTAL OUTCOMES 

We carried out similar analyses for other developmental outcomes. How do combinations of 

variables connected with genes, environment, and geography explain variation in outcomes 

including health, fertility, and self-reported happiness? Table 5 presents an overview of the 

results; Annex 3 contains more details.  

For all these development outcomes, ACP1*B is a powerful predictor, leading us to consider 

what this finding means and what it implies. 
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DISCUSSION 

After all our work assembling and analyzing these data, we are especially cognizant of their 

limitations, as well as their promise. We do not have ACP1 frequencies for all countries, and the 

data we do have cannot be conceptualized as a random sample of each country’s population. For 

many countries, the coverage of ethnic groups is incomplete. Although we believe that our 

compilation of 153,090 global genotypes is among the largest such genetic undertakings ever, we 

are keenly aware of the need for more and better data.  

Importantly, this need for more research is propelled by the surprisingly strong and robust 

associations we discover between our imperfect and incomplete measure of the national 

frequencies of ACP1 alleles and a variety of development outcomes. We also need better 

theorizing about what the connections between ACP1 frequencies and health, psychology, and 

culture and therefore for development—and about what other causal factors are correlated with 

ACP1 frequencies. Clearly, our variable ACP1*B is a proxy for much more than a single gene. 
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Table 5 

Overview of Findings 

 ln GNI 
pc ppp 
2014 

Rights 
(lower is 
better) 

Freedom 
from 
Corruption 

Global 
Compet. 
Index 

DALY 
(higher is 
worse) 

Fertility Happiness 

Frequency of 
ACP1*B allele 

- *** + *** - *** - *** + *** + *** - *** 

Predicted genetic 
diversity (ancestry 
adjusted) 

+ ns - ns + ns - ns + ns - ns + ns 

Predicted genetic 
diversity squared 
(ancestry adjusted) 

- ns + ns - * + ns - ns + ns - ns 

Log Neolithic 
transition timing 
(ancestry adjusted) 

- ns + ns - ns - ns - * + ns - * 

ln precipitation - ** - ns + ns + ns + * - ns + ns 
Log % arable land - ** + ** - ** - ns + ns + ns - ** 
Land suitable for 
agriculture 

- ns - ns - ns - ns - ns - ** - ** 

ln Mean distance to 
nearest waterway 

- *** + *** - *** + ns + *** + * - *** 

Sub-Saharan Africa 
dummy variable 

- ns - * + ns - ns + ns + *** + ns 

Number of countries 105 109 109 99 106 109 98 
Adjusted R2 0.57 0.13 0.15 0.28 0.72 0.69 0.44 

Note:  All results are from the IV regressions. * = p ≤ 0.10, ** = p ≤ 0.05, *** = p ≤ 0.01. ns = not significant at p < 0.10. 

To underscore this point, one thing this pattern of results does not mean is that the frequency 

of a particular gene such as ACP1 itself has a powerful direct effect on national income or 

political rights or the other outcomes we have analyzed. With rare exceptions, behavioral traits 

are polygenic in nature (Comings 1997). Polygenic inheritance is due the additive and interactive 

effect of many genes interacting with the environment. As noted above, across evolutionary time 

ACP1 allele frequencies have become adapted to global variations in UV radiation and infectious 

diseases. As noted above, after adjusting for migration effects, national-level frequencies of IL6-

174G and IL10-1082G, two other adaptations to hostile climates and disease environments, are 

highly correlated with the frequencies of ACP1. Thus, the ACP1*B variable we have been 
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examining is surely picking up the influences of other genetic factors that have evolved in 

evolutionary time in response to ultraviolet exposure and pathogen burdens. In addition, as we 

saw earlier in Table 1, various social and cultural adaptations to climate and disease are 

correlated with, possibly causally connected with, these genetic adaptations. Thus, ACP1 

frequencies are doubtless a proxy for other genetic, social, and cultural adaptations to pathogen-

rich environments, which our scant current data and limitations of modeling make it difficult to 

untangle. 

 “Factors Beyond Our Control” 

Let us turn now to an interpretation of this class of findings:  “Much of the variance in such-

and-such a development outcome across nations is explained by factors beyond a country’s 

control, such as climate, geography, and genes.”  What does this mean, statistically?   

A standard explanation is conveyed by Wooldridge (2009: 38, emphasis in original): “R2 is 

the ratio of the explained variation compared to the total variation; thus, it is interpreted as the 

fraction of the sample variation in y that is explained by x.” As Wooldridge recognizes, this 

interpretation depends on a number of conditions. Linear regression assumes linearity in 

parameter space. Curvilinearity and other issues such as outliers, clustering, and 

heteroskedasticity render suspect the standard interpretation of R2 (a classic reminder is 

Anscombe 1973; see also Anderson-Sprecher 1994).  

Suppose that linearity applies. If measures of climate, geography, and genes explain (say) half 

the variance in income per head, or 72 percent of the variance in fertility, does this doom a 

country to remain more or less where it is? 

The short answer is no.  
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R2 Is Large, Yet Entire Distributions Improve 

Let us go back to 1970. It turns out that in that year, too, our measures of climate, geography, 

and genes explained over half the variance in per capita incomes. As we have seen, these same 

variables explain about half of the variance in per capita incomes in 2014. And yet average 

incomes rose from $6451 in 1970 to $15,415 in 2014.  

An analogy is the heritability of human height. It is large, about 80 percent for Australians, 

Finns, and white Americans (Lai, 2006), meaning that across individuals in these groups at a 

given point in time, genetic endowments matter much more than environmental conditions. And 

yet, from 1850 to 1980 average heights among European males increased by 11 cm (Hatton, 

2014). “The evidence suggests,” notes Hatton (2014), “that the improving disease environment, 

as reflected in the fall in infant mortality, is the single most important factor driving the increase 

in height.”  He cites other factors including more sanitary housing and living conditions, better 

general education about health and nutrition, and better social services and health systems. These 

same changes may transform historical relationships between “deep roots” and future 

development outcomes. 

Functional Relationships Evolve 

In such a changing and adapting world, some of the variation that was fixed or limited in the 

past will be malleable in the future. In addition to the factors mentioned by Hatton, consider for 

example the impacts on development of rural education (especially of girls); good-government 

movements; social networks; technological change; contraceptive techniques; and international 

flows of goods, services, and finance, which increased by a factor of 1.5 from 1990 to 2012 and 

could triple in the next decade (Manyika et al. 2014). Changes like these are catalyzing the rapid 

development of low- and middle-income countries. Convergence with rich countries is well 

 21 



established for social indicators like life expectancy, maternal mortality, and infant mortality. 

New data show that convergence in material living standards is happening much faster than 

previously thought.8 For our purposes, these changes may indicate that the future explanatory 

power of “deep roots” variables will differ from the statistical patterns of the past. 

Adapting Policies  

Studying deep roots may help us rethink present policies. Consider an analogy from plant 

science. Suppose scientists discover that the productivity of certain bean varieties is largely 

heritable—meaning genetically determined—given current variations in soil, water, pests, sun, 

shade, and so forth. It would be premature to conclude that one bean variety that now is less 

productive is destined to be so under all conditions. Environmental variables are subject to 

change, including designed change via fertilizer, irrigation, pesticides, shade planting, cross 

cropping, and more. With adaptive cultivation techniques, estimates of heritability can change 

radically.  

By analogy, we may hope to discover policies that take better account of differing climatic, 

geographic, and genetic conditions. And if adaptive policies are discovered and used widely, 

8 The 2014 report of the International Comparison Program (ICP) shows that the developing countries have been 

moving even faster than previously believed (World Bank, 2014). “For example, Indonesia and Ghana are both more 

than 80 percent richer than previous estimates. For Egypt and Pakistan the upward changes are more than 60 

percent. These changes are dramatic. They suggest that Indonesia’s economy may be as large as that of the United 

Kingdom, while Pakistan and Egypt are almost as large as Australia… [G]lobally, the poorest large developing 

countries are converging more rapidly with rich countries than we thought and this will inevitably translate into a 

more equal global income distribution.” (Kharas and Chandy, 2014). 
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historical estimates of the importance geographic, climatic, and genetic factors may become 

obsolete.  

Learning from Exceptions  

Multivariate statistical studies often focus on regularities across all observations; they can also 

be used to identify exceptional performers. Some countries perform better than others, and they 

may contain lessons. Consider fertility. Our IV equation with genetic, climatic, and geographic 

variables explains 72 percent of the variance in log fertility. And yet, fertility levels have 

changed radically over the past few decades. Moreover, some countries have been exceptional 

performers. Ghana, for example, reduced mean fertility from 6.4 children per woman in 1998 to 

4.0 in 2008. Ghana’s climate, geography, and genes have not changed. What did Ghana do to 

achieve these outstanding results—and what lessons might be drawn?9   

Regressions of the kinds this paper have been exploring can be helpful in identifying 

exceptional performers. Candidates are those countries who do much better than the equations 

predict. The residuals contain many sources of variance, including measurement error and 

variation that might be explained away with fuller specifications. The choice of econometric 

techniques affects the residuals. There is error that we simply call random. These facts mean that 

9 Countries can also change their governance patterns dramatically. Singapore went from a corrupt (and relatively 

poor) country in the 1960s to a very clean (and rapidly growing) country in the 1970s and thereafter. In just five 

years after 2003, the Republic of Georgia went from 113th in the world in “Ease of Doing Business” to 12th. For 

these and other examples, see Klitgaard (2015). 

 23 

                                                 



we cannot assume that countries with large positive residuals are exceptional performers—or that 

those with large negative residuals have done something wrong.10   

Nonetheless, studying residuals has proved a valuable starting point. For example, Raynor and 

Ahmed (2013) identified 344 “exceptional companies” by looking at financial information that 

spans nearly half a century on more than 25,000 companies. Klitgaard and Hall (1975) identified 

consistently high-performing schools in four U.S. data sets. These schools turned out to have 

better qualified teachers and small class sizes—even though the regression coefficients on these 

variables across all schools were not different from zero. The method has been widely used in 

education since then (for example, Waits et al., 2006).  

Klitgaard and Fitschen (1997) used geographic information systems to array the residuals 

from a multivariate analysis of income averages among 190 tribal authorities in KwaZulu-Natal, 

South Africa. Some tribal authorities performed much better (worse) than expected based on 

education, rainfall, soil quality, and other predictors. Could the apparent exceptions be accounted 

for by geography, such as being particularly near a “white” city, a military garrison, or a 

highway?  Some could. The authors left out those observations and focused instead on adjacent 

high-residual and low-residual tribal authorities, whose differences geography seemed unable to 

explain. These places would be the subject of case studies. 

Table 6 provides clues about which country case studies might pay dividends. Enter here a 

range of skills that go beyond cross-country regressions, skills from history to sociology, 

anthropology to political science, biology to economics. 

10 Especially with relatively small populations, incomplete theories, and incomplete data—our situation with these 

data—the statistical analysis gets complicated and tenuous. In all real-life evaluations, identifying exceptional 

performers is invariably a tentative exercise (Klitgaard 1978).  
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Table 6 

Overachieving Countries in Various Development Outcomes, Given Some Genetic, Climatic, 

and Geographical Variables 

 Ten Best Residuals 
 1. Trinidad & Tobago 2. South Africa 
Per Capita GNI 2014 ppp 3. Costa Rica 4. Korea 
 5. Nigeria 6. Saudi Arabia 
 7. USA 8. Botswana 
 9. Bulgaria 10. Switzerland 
Rights 1. Mali 2. Trinidad & Tobago 
 3. Costa Rica 4. Bulgaria 
 5. Guyana 6. South Africa 
 7. Korea 8. Mongolia 
 9. Brazil 10. Panama 
Disability-Adjusted Life Years 1. Costa Rica 2. Japan 
 3. Korea 4. Mali 
 5. Ethiopia 6. Spain 
 7. Algeria 8. Rwanda 
 9. Australia 10. Switzerland 
Freedom from Corruption 1. Rwanda 2. Costa Rica 

 3. Mali 4. Bhutan 

 5. Ethiopia 6. Switzerland 

 7. Japan 8. Uruguay 

 9. Chile 10. Australia 

Below-Expected Fertility11 1. South Africa 2. Trinidad & Tobago 
 3. Costa Rica 4. Botswana 
 5. Thailand 6. Bulgaria 
 7. China 8. Japan 
 9. Lesotho 10. Poland 
Happiness 1. Costa Rica  2. Israel  
 3. Switzerland 4. Canada 
 5. Panama 6. Mexico 
 7. Trinidad & Tobago  8. Mali 
 9. Nigeria 10. Australia 

 

11 Data about ACP1 frequencies are not available for Ghana, the success story cited in the text.  
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FINAL REMARKS 

Like it or not, the world will soon be awash in new genetic data about individuals, groups, and 

countries. The rise and spread of genome-wide association studies combined with expanded 

international data sharing will result in more and better genetic information being included in 

studies of world development. A kind of resignation may ensue: what can we do if factors 

beyond our control can be statistically connected to outcomes we desperately seek to improve? 

Fatalism is, to say the least, premature (Putterman 2012). For the reasons we have just 

examined, if future research discovers that climate, geography, and population genetics explain a 

substantial portion of the variance in many development outcomes, this finding by itself should 

not engender defeatism. The frequencies of a few genes such as ACP1, IL6, and IL10 are likely 

proxies for the effects of many other genes that respond to climate and disease—and may well be 

proxies for malleable but predictively important social and cultural variables. Conditions in the 

world are changing so rapidly and deeply that statistical regularities of the past do not condemn a 

country to remain where it now is. Research on the deep roots of development may reveal 

interactions between policy choices and climate, geography, and genes. And countries that do 

better than the rest given their deep roots can teach and inspire. In these ways, the expansion of 

research on the historical and evolutionary factors affecting international development can help 

us be more creative about what to do now and in the future.  
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ANNEX 1. SOME GENETIC MARKERS  

In this paper we take advantage of new data we have assembled on the country-level 

frequencies of a particular genetic polymorphism that responds to the effects of lower folate, 

higher oxidative stress, increased immunosuppression, and more pathogens: ACP1 or acid 

phosphatase controlled by locus 1. 12 ACP1 is an enzyme expressed in many tissues. It has three 

common co-dominant alleles, ACP1*A, ACP1*B and ACP1*C, with combinations defining six 

phenotypes characterized by different enzyme activity (from least to most active, 

A/A<B/A<(B/B, C/A)<C/B<C/C). These levels of activity affect cell division, differentiation, 

and growth.  

ACP1 seems to adapt to UVR exposure in order to reduce oxidative stress. ACP1*C carriers 

are least protected against oxidative stress (Apelt et al. 2009), and in our country-level data the 

frequency of the ACP1*C allele is inversely correlated with UVR exposure (r=-0.78). The 

frequency of ACP1*B is positively correlated with UVR (r=0.79). 

12 The ACP1 gene (gene map locus chr. 2p25, OMIM**171500) encodes the Low Molecular Weight-Protein 

Tyrosine Phosphatase (LMW-PTP) that functions both as an acid phosphatase and a protein tyrosine phosphatase by 

hydrolyzing protein tyrosine phosphate to protein tyrosine and orthophosphate. It is ubiquitously expressed, and it 

has been demonstrated to be involved in several biochemical pathways (Bottini et al. 2002a). At an immunological 

level, by dephosphorylating a negative regulatory phosphorylation site in the ZAP-70 tyrosine kinase, LMW-PTP 

plays a crucial role in the activation of the signaling pathways downstream of the T cell receptor (TCR) (Bottini et 

al. 2002b). LMW-PTP is also able to modulate mitotic and metabolic signaling through the dephosphorylation of 

PDGF and insulin receptors, respectively (Taddei et al. 2000). These immune-metabolic molecular correlates of 

LMW-PTP are further corroborated by the several genetic-association studies conducted by analyzing the functional 

polymorphism of ACP1.  
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Excessive UVR produces both local and systemic immunosuppression (Beissert & Schwarz, 

1999); among other genes, ACP1 responds. It mediates the shift from pro-inflammatory to anti-

inflammatory bias (Bottini et al. 2009). ACP1*B is more able to adapt metabolically to heat 

stress and is less vulnerable to many infectious diseases (Bottini, 1999; Bottini & Gloria-Bottini, 

2004). In malarial areas of the tropics, the frequency of ACP1*C allele is close to zero (Greene et 

al. 2000).  

Unfortunately, these adaptations of ACP1 have some negative side effects in terms of various 

physical ailments, personality characteristics, and mental illnesses. ACP1 is associated with 

inflammatory conditions, such as allergies and asthma, and with autoimmune diseases, including 

rheumatoid arthritis (Bottini et al. 2002a; Teruel et al. 2012; Bottini et al. 2007; Bottini et al. 

2003). It is also associated with metabolic diseases, such as diabetes, obesity, and coronary artery 

disease (Gloria-Bottini et al. 2014; Banci et al. 2009; Bottini et al. 2002c). ACP1 is correlated 

with mental states such as major depression, co-morbid features of Tourette syndrome, bipolar 

disorder, and various personality traits (Willour et al. 2012; Bottini et al. 2002d; Napolioni et al. 

2014).  

ACP1 is only one of many genes that mediate immune interactions at the interface of the 

individual and his environment. Other genes affect the relative secretion of pro- and anti-

inflammatory cytokines that determine the Th1/Th2 balance, such as IL6 and IL10.  

Interleukin-6 (IL6-174G) acts both as a pro-inflammatory cytokine to stimulate immune 

response during infection and an anti-inflammatory myokine in muscle fibers. IL6 has been 

shown to be required for resistance against many pathogens, such as bacterium streptococcus 

pneumonia (Van der Poll et al. 1997). The amount of IL6 produced is under control of the IL6 

gene, allowing it to be up- or down-regulated as a function of the average pathogen burden to 
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which populations are typically exposed. Across evolutionary time, populations exposed to high 

pathogen burdens adapt by positively selecting the high-producing -174 G-allele, while carriers 

of the low-producing -174 C-allele are gradually removed from the population by greater 

susceptibility to disease. Besides the comprehensive study carried out by Fumagalli et al. (2011) 

that provides evolutionary evidence of a pathogen-driven natural selection at the IL6 locus, 

several studies support the role of IL6 alleles. For example, Sortica et al. (2014) reported higher 

parasitemia levels in IL6 -174C carriers from an Amazonian population, while Doyle et al. 

(2010) showed greater illness for respiratory syncytial virus infection in IL6 -174 C/C carriers.  

IL6 is critical in the fight against infectious disease pathogens, while Interleukin-10 (IL10-

1082G) is immunosuppressive. The IL6/IL10 ratio interacts with UVR. Ultraviolet radiation 

induces immune suppression when it is absorbed by an epidermal photoreceptor, trans-urocanic 

acid (UCA), and converted into a biologically recognizable signal, cis-UCA. In turn, UVR-

stimulated cis-UCA activates a cytokine cascade (PGE2→IL4), which culminates in the 

activation of IL10, which induces immunosuppression by inhibiting pro-inflammatory cytokines. 

In this manner, UV-induced increases in IL10 suppress IL6. As a result, UV-stimulated 

immunosuppression impairs resistance to many infectious agents, such as bacteria, parasites, 

viruses, and fungi.  

As with ACP1, these adaptations to UVR and disease have other implications for 

psychological and physical health. Increased IL6, decreased IL10, and increased IL6/IL10 ratio 

have been implicated in the pathophysiology of major depressive disorder (Rawdin et al. 2013). 

Research on individuals shows that elevated IL6 levels have a negative impact on acquiring 

verbal cognitive ability requiring long-term memory (Sasayama et al. 2012). Serum 

concentrations of IL6 are significantly higher in intellectual disability cases (Aureli et al. 2014). 

 29 



Higher IL6 concentrations have also been associated with an increased rate of cognitive decline 

with age in both executive function and memory function (Mooijaart et al. 2013). Moreover, 

both of these cytokines are involved in learning and memory. Conversely, IL10 impairs spatial 

learning, and memory performance is negatively related to IL10 levels (Harvey et al. 2013). 

Taken together, these reports suggest that imbalances in the IL6/IL10 ratio may be linked to 

cognitive dysfunctions.  

Large-scale studies of Big Five personality traits report that those individuals with lower 

circulating IL6 levels are higher in Conscientiousness, Openness, and Neuroticism (Turiano et al. 

2013; Chapman et al. 2011).  

Those suffering from coronary artery disease, an inflammatory disease, have an increased 

frequency of the IL6 -174 G-allele (Elsaid et al. 2014). Bipolar disorder is also known to involve 

inflammatory dysregulation, and bipolar patients have significantly elevated levels of soluble IL6 

receptor (Bai et al. 2014). Likewise, serum IL6 levels are significantly higher in schizophrenia 

patients, and the induction of epigenetic modification by IL6 has been proposed as a mechanism 

in the pathology of schizophrenia (Frydecka et al. 2014).  

Thus, in regions with an elevated burden of infectious disease, high serum concentrations of 

IL6 and increased frequencies of the high-producing -174 G-allele are advantageous for survival. 

As populations migrated out of high-UVR regions into temperate zones, the immunological 

benefits of the high-producing G-allele began to dissipate, while the cognitive, affective, and 

personality attributes of the C-allele were likely to confer greater reproductive advantage. 

Metaphorically, in largely disease-free environments C-allele carriers were able to turn their 

biological attention away from disease threat, affording them the “luxury” of greater optimism, 

conscientiousness, and goal striving. 
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Our data show that IL6-174G and IL10-1082G allele frequencies are highly negatively 

correlated (r=-0.82). UVR exposure is positively correlated with IL6 (r=0.79) and negatively 

correlated with IL10 (r=-0.53) (Table 5 below). ACP1*B is also correlated positively with IL6 

(r=0.78) and negatively with IL10 (r=-0.51). Our data set currently includes only 78 countries for 

IL6 and 68 countries for IL10, compared with 120 countries for ACP1. So, in our econometric 

work, we focus on ACP1. We hypothesize that measures of ACP1 allele frequencies at the 

national level also capture the effects of other genes that adapt to UVR and disease.  
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ANNEX 2. COMPILING COUNTRY-LEVEL FREQUENCIES 

ACP1 

An extensive literature search was carried out on PubMed and Google free search engines 

using the keywords: ‘‘Acid Phosphatase locus 1’’, ‘‘ACP1’’, “LMWPTP”, “red acid 

phosphatase”, ‘‘polymorphism’’, “variant”, “SNP”, “Single Nucleotide Polymorphism” and 

“genetics” applying the following algorithm: (Acid Phosphatase locus 1 OR ACP1 OR 

LMWPTP OR red acid phosphatase) AND (genetics) AND (polymorphism OR variant OR 

Single Nucleotide Polymorphism OR SNP). The identification of eligible studies was not 

restricted to English language. Studies references were also analyzed to find any study not 

available from the electronic databases. All published studies that included allele frequency 

information on the samples genotyped for ACP1 were included in the data analysis. For case-

control studies, only the control group (when reported as “healthy”) was considered. ACP1 

tagSNPs (rs11553742 and rs79716074) (Faggioni et al. 2002) were retrieved from 1000 Genome 

Consortium, Phase 3 variant set (1000 Genomes Project Consortium, et al. 2012). The existence 

of a Hardy-Weinberg Equilibrium was checked for every sample population by Pearson’s chi-

square, filtering all the collected data using a two-tail p-value less than 0.05. Mean allele 

frequencies were obtained by averaging the allele frequencies obtained from the population 

belonging to the same country and weighted according to country ethnic composition (Central 

Intelligence Agency 2013). For example, consider New Zealand. The literature provides ACP1 

frequencies from two studies, one for the European population living in Auckland and for the 

Maori. The ethnic composition of New Zealand is European 71.2%; Maori 14.1%; Asian 11.3%; 

“Pacific peoples” 7.6%; Middle Eastern, Latin American, African 1.1%; other 1.6%; not stated 

or unidentified 5.4%. Our frequency data average the ACP1 allele frequencies of the two studies 
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weighted by the respective ethnic percentages. The sum of the two percentages (71.2 and 14.1) 

yields the “Ethnic Coverage,” here 85.3%. In the data analyses for this paper, only countries 

were used for which the samples of ethnic groups represented 75 percent or more of the 

country’s population. 

IL6 AND IL10 

The same strategy for data searching was used for IL6 and IL10 as for ACP1. For IL6 and 

IL10, however, we applied to our raw average-per country IL6 -174G>C and IL10 -1082G>A 

frequencies a matrix transformation based on the “World Migration Matrix” of Putterman and 

Weil (2010), which tracks the population movements of 165 countries going as far back as the 

1500s. The procedure and the use of the Putterman and Weil (2010) transformation for migration 

are described in detail in Napolioni and MacMurray (2016). For ACP1, such adjustment was not 

possible given the three allelic nature of its polymorphism.  

 33 



ANNEX 3. ANALYSES OF OTHER DEVELOPMENT OUTCOMES 

DISABILITY-ADJUSTED LIFE YEARS 

The World Health Organization estimated disability-adjusted life years (DALY) in 2004 for 

180 countries.13  Figure A-1 displays the data. 

Figure A-1 

Disability-Adjusted Life Years 

 

Note:  Lower values are healthier. 

Table A-2 summarizes several regressions using our genetic, climatic, and geographic 

variables to explain country-level variation in log Disability-Adjusted Life Years.  

13 Robberstad (2005) reviews the meaning of DALY and some controversies about it. The World Health 

Organization explains:  “One DALY can be thought of as one lost year of ‘healthy’ life. The sum of these DALYs 

across the population, or the burden of disease, can be thought of as a measurement of the gap between current 

health status and an ideal health situation where the entire population lives to an advanced age, free of disease and 

disability.”   

 http://www.who.int/healthinfo/global_burden_disease/daly_disability_weight/en/   
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Table A-2 

Explaining Disability-Adjusted Life Years with Certain Genetic, Climatic, and Geographic 

Variables (Lower DALY Is Healthier) 

ln DALY (1) OLS (2) OLS (3) OLS (4) OLS (5) IV 

Frequency of ACP1*B allele 3.68*** 
(0.41) 

  1.63*** 
(0.37) 

3.70*** 
(0.64) 

Predicted genetic diversity (ancestry adjusted)  -163.27*** 
(48.28) 

-52.83 
(43.16) 

-21.53 
(42.70) 

20.47 
(47.95) 

Predicted genetic diversity squared (ancestry 
adjusted) 

 117.71*** 
(34.08) 

37.06 
(69.85) 

16.39 
(30.48) 

-12.22 
(34.15) 

Log Neolithic transition timing (ancestry adjusted)  -0.78*** 
(0.07) 

-0.203* 
(0.108) 

-0.24** 
(0.11) 

-0.217* 
(0.121) 

ln precipitation   0.07 
(0.04) 

0.11** 
(0.05) 

0.097* 
(0.051) 

Log percentage of arable land   0.02 
(0.03) 

0.03 
(0.03) 

0.06 
(0.04) 

Land suitable for agriculture   -0.17 
(0.17) 

-0.08 
(0.17) 

-0.07 
(0.19) 

Mean distance to nearest waterway   0.13*** 
(0.03) 

0.12*** 
(0.03) 

0.12*** 
(0.03) 

Sub-Saharan Africa dummy variable   0.68*** 
(0.14) 

0.50** 
(0.16) 

0.24 
(0.18) 

Constant 7.22*** 
(0.31) 

73.04*** 
(16.94) 

30.34** 
(15.27) 

40.75* 
(22.91) 

23.12 
(26.04) 

Number of countries 116 151 142 106 106 
Root mean squared error 0.44 0.39 0.32 0.28 0.31 
Adjusted R2 0.41 0.53 0.69 0.77 0.72 

Standard errors are in parentheses. Note:  * = p ≤ 0.10. **= p ≤ 0.05. *** = p ≤ 0.01. In all three equations, ACP1*B is instrumented with 

ultraviolet B exposure. Durbin and Wu-Hausman tests reject exogeneity (p<0.01). Wald test rejects the hypothesis that the 

instrument is weak (p<0.01). 

 

In both equations (3) and (4), higher frequencies of ACP1*B are strongly associated with 

worse health outcomes measured by disability-adjusted life years (the simple correlation is 0.64). 

Using equation (4) in Table A-2, we see that about two-thirds of the variance in DALYs is 

explained by our genetic, weather, and geographic variables. 

FERTILITY 

Across 184 countries, the mean fertility is 2.86, with a minimum of 1.2 and a maximum of 

7.6. The distribution has a long right-hand tail (see Fig. A-2, with illustrative countries indicated 

underneath), so we take logarithms. 
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Figure A-2 

Distribution of Average Fertility 

 

Live births/female    HUN 1.2   UKR 1.5      FRA 2.0       IND 2.5    SYR 3.0    GTM 3.9   CAF 4.5  SEN 5.0  NGA 6.0 

  SGP 1.2    CHE 1.5      MMR 2.0     PER 2.5    ISR 3.0     IRQ  4.1   KEN 4.5  BEN 5.0          NER 7.6 

Our genetic, climatic, and geographic variables explain 56 percent of the variance in mean 

fertility levels across countries (see Table A-2, equation 4). That same equation shows that 

genetic diversity has a mildly significant U-shaped relationship with fertility. ACP1*B is highly 

significant. Some weather and geographic variables also have explanatory power. 
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Table A-2 

Explaining ln Fertility with Certain Genetic, Climatic, and Geographic Variables  

ln Fertility (1) OLS (2) OLS (3) OLS (4) OLS (5) IV 

Frequency of ACP1*B allele 3.00*** 
(0.33) 

  1.11*** 
(0.34) 

2.46*** 
(0.54) 

Predicted genetic diversity (ancestry adjusted)  -208.15*** 
(43.66) 

-83.13** 
(36.26) 

-69.57* 
(38.78) 

-43.20 
(40.71) 

Predicted genetic diversity squared (ancestry 
adjusted) 

 148.54*** 
(30.81) 

56.30** 
(25.80) 

47.79* 
(27.66) 

29.89 
(28.98) 

Log Neolithic transition timing (ancestry adjusted)  -0.56*** 
(0.07) 

0.09 
(0.09) 

0.08 
(0.10) 

0.09 
(0.10) 

ln precipitation   -0.01 
(0.04) 

-0.01 
(0.04) 

-0.01 
(0.04) 

Log percentage of arable land   -0.02 
(0.03) 

-0.00 
(0.03) 

0.02 
(0.03) 

Land suitable for agriculture   -0.369** 
(0.144) 

-0.391** 
(0.158) 

-0.38** 
(0.16) 

Mean distance to nearest waterway   0.054** 
(0.021) 

0.042* 
(0.025) 

0.04 
(0.03) 

Sub-Saharan Africa dummy variable   0.86*** 
(0.12) 

0.69** 
(0.14) 

0.52*** 
(0.16) 

Constant -1.29*** 
(0.25) 

78.42*** 
(15.32) 

30.97** 
(12.83) 

24.88* 
(13.79) 

14.09 
(14.56) 

Number of countries 119 155 145 109 109 
Root mean squared error 0.36 0.36 0.27 0.26 0.26 
Adjusted R2 0.40 0.46 0.69 0.71 0.69 

Standard errors are in parentheses. Note:  * = p ≤ 0.10. **= p ≤ 0.05. *** = p ≤ 0.01. In equation (5) ACP1*B is instrumented with 

ultraviolet B exposure. Durbin and Wu-Hausman tests reject exogeneity (p<0.01). Wald test rejects the hypothesis that the 

instrument is weak (p<0.01). 

 

HAPPINESS 

Self-reported happiness is a subject of active study and debate (for example, Deaton 2008; 

Proto & Rustichini, 2013; Weimann, Knabe & Schöb 2015). In the World Happiness Report 

2013 (Helliwell et al. 2013), across 142 countries the mean happiness level is 5.47, with a 

minimum of 3.5 (Benin) and a maximum of 7.7 (Norway, Switzerland, and Denmark). Figure A-

2 displays the variation in country means (the standard deviation is 1.11).  

 37 



Figure A-3 

Histogram of Country Mean Self-Reported Happiness 

 

  BEN        SYR         HTI         LAO           NGA         KAZ           ESP           BRA          PAN       SWE 

           BDI        GAB       SDN         CHN           RUS          ECU          TTO           GBR        CRI         DNK 

As before, we use our genetic, climatic, and geographic measures to explain the observed 

variation in country means. Table A-3 provides some results. 
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Table A-3 

Explaining Country Mean Self-Reported Happiness with Certain Genetic, Climatic, and 

Geographic Variables  

Happiness (1) OLS (2) OLS (3) OLS (4) OLS (5) IV 

Frequency of ACP1*B allele -5.63*** 
(1.03) 

  -4.85*** 
(1.20) 

-9.58*** 
(1.91) 

Predicted genetic diversity (ancestry adjusted)  387.39*** 
(133.47) 

182.92 
(135.37) 

73.18 
(141.10) 

3.59 
(146.59) 

Predicted genetic diversity squared (ancestry 
adjusted) 

 -282.49*** 
(94.36) 

-131.52 
(96.51) 

-56.87 
(100.87) 

-11.75 
(104.60) 

Log Neolithic transition timing (ancestry adjusted)  0.567*** 
(0.190) 

-0.38 
(0.31) 

-0.55 
(0.34) 

-0.62* 
(0.35) 

ln precipitation   0.04 
(0.14) 

-0.07 
(0.16) 

0.02 
(0.17) 

Log percentage of arable land   -0.14 
(0.10) 

-0.18 
(0.12) 

-0.25** 
(0.12) 

Land suitable for agriculture   -0.71 
(0.50) 

-1.12** 
(0.54) 

-1.08** 
(0.55) 

Mean distance to nearest waterway   -0.21*** 
(0.08) 

-0.22** 
(0.19) 

-0.25*** 
(0.09) 

Sub-Saharan Africa dummy variable   -1.47*** 
(0.43) 

-1.08** 
(0.53) 

-0.37 
(0.59) 

Constant 9.70*** 
(0.76) 

-131.53*** 
(46.76) 

-95.61 
(69.32) 

-8.68 
(49.89) 

22.21 
(52.19 

Number of countries 102 138 129 98 98 
Root mean squared error 1.03 0.97 0.90 0.85 0.87 
Adjusted R2 0.22 0.23 0.36 0.48 0.44 

Standard errors are in parentheses. Note:  * = p ≤ 0.10. **= p ≤ 0.05. *** = p ≤ 0.01. 

Surprisingly, ACP1*B is the strongest predictor of mean self-reported happiness. As noted in 

the text, clearly ACP1*B is standing for more than this one gene:  we believe it represents a suite 

of correlated variables that have reacted over time to climate and disease. Almost half the 

variance in mean country happiness is explained by these few variables representing geography, 

climate, and genes. 
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