Economic Corridors

Arianna Legovini, Alice Duhaut, Theophile Bougna
ieConnect for impact

- Launched in 2015
- Partnership with DIME and Transport GP
- 30 ongoing activities
Objectives

KNOWLEDGE GAP

Generate data and evidence on impact

Understand the mechanisms
DIME’s Approach

• **DATA** Innovate in measurement & build data capabilities to understand the problem you are trying to solve

• **AI** Analyze data & find opportunities for targeting and prioritizing public resources and efforts

• **IE** Evaluate interventions to document success & justify scale up
Understanding of the Problem

• ACCESS
 • Who is disconnected?
 • What are the conditions of the road?
 • How accessible are the markets people are trying to reach?
 • What are the other dimensions that impact accessibility:
 • Improvement in transport sector organization
 • Road safety and security of users
Benefits of DIME’s Approach

Elements of DIME Model

• Data collection and integration
• Artificial Intelligence/Analytics
• Impact Evaluation: measure the causal impact of interventions

Improve

• Monitoring & program management
• Planning and prioritization
• Investments
• Regulation
ieConnect 's Economic Corridors Approach
DIME Approach to Study Economic Corridors

SYSTEMATIC

- To use new technologies to build data systems
- To test policy interventions and inform mid-course decisions
- To use one project for multiple experiments
- To select most relevant policy and research questions
An Economic Corridor is a geographically defined network connecting economic agents and activities to overcome frictions and unleash efficiencies.

Traditional CBA of transport investments focusses only on a narrow set of direct benefits and costs:
- reduction in travel time, Vehicle Operating Costs (VOC) savings, etc.

However, economic corridors can entail much wider economic benefits and costs:
- Trade & economic activity, structural change, poverty reduction, pollution, deforestation, etc.

Identify and test the conditions for successful corridor investments + complementary policy interventions.
Economic Corridors: The Chain of Expected Results

Intervention
- Transport mode
 - Rails
 - Roads
 - Waterways
- Connection type
 - Urban-urban
 - Urban-rural
 - Urban-gateway
- Construction type
 - New-system
 - Upgrade-system
 - New-link
 - Upgrade-link

Intermediate outcomes
- Direct
 - Congestion
 - Accessibility
- Indirect
 - Land and Asset values
 - Migration
 - Population
 - Firm location
 - Productivity
 - Trade

Wider economic benefits
- Economic Welfare
 - Wages
 - Income
 - Consumption
- Social Inclusion
 - Jobs
 - Gender
- Equity
 - Geographic
 - Inter-personal
 - Poverty
- Environmental
 - Air Pollution
 - Deforestation
 - Resilience

Identification challenges in corridor projects?
- Non-random placement of these corridors
- Solutions: Instrumental variables (see Redding and Turner, 2014) + new and high-frequency data
Second: Bringing in the data

Guided by the theory of change and specific objectives of the project

Bring in "new" —GPS data, nighttime and day time satellite imagery

& "traditional" data sources – administrative data, surveys

More data often means more opportunities & stronger IEs!

Three cases of ongoing IEs in Tunisia, Iraq, Pakistan: how to document the extent of the problem, track progresses made & think about wider economic costs and benefits?

Two cases in preparation: how to think about complementary interventions?
Implementing our approach
A Flavor of the ieConnect Corridors Portfolio

Bringing new and existing data sources together to answer some of the big questions

1. **Feeding into the M&E and tracking targeted outcomes**
 - Measuring speed, congestion and accessibility – resources for scraping travel times

2. **Indirect intermediate outcomes:**
 - Do corridors foster economic activity? Nighttime lights and market access in Iraq
 - Do corridors induce urbanization? Evidence of Ethiopia using land use data

3. **Evidence on the wider economic benefits:**
 - Do investments in infrastructure reduce the cost of distance within a country? Price series in Pakistan
 - Do roads improve welfare? Poverty and nighttime lights in Pakistan

4. **Can we improve corridors with complementary interventions**
 - Last-mile connectivity in Guinea-Bissau
 - Trade Investments in Southern Africa
 - Trauma registries in Malawi
Highway Upgrades in Tunisia

• The project upgrades roads from single carriageways to two carriageways separated by a median.

• We are studying impact of upgrading lane capacity of 3 existing roadway segments belonging to 2 separate corridors that branch from cities on coast to country’s interior.

• Research focuses on effect of upgrades on economic activity, job creation, and road safety outcomes.
Measuring Travel Time and Congestion

• We scrape travel times in real time from private sector sources, including Google Maps and Mapbox

• Allows examining changes in average speed and congestion over time
Road Congestion Algorithm

- We use Google maps API to track real-time road congestion
- This also has the advantage of tracking road congestion with and without traffic conditions.

Are areas affected differently depending on their position along the project corridors?

Traffic Speed in Tunisia - Weekly Average in 2019-20

Computed from distance and travel time scrapped using Google Maps API
Building Accessibility Maps

• We use travel time and distance scrapped from Google Maps API

• This gives us an estimate of traffic congestion along the origins and destinations covered by the project roads

• Based on these, we build accessibility maps that show the areas that can be reached from an origin point in the map
A Flavor of the ieConnect Corridors Portfolio

Bring new and existing data sources together to answer some of the big questions

1. Feeding into the M&E – targeted outcomes
 - Measuring speed, congestion and accessibility – resources for scraping travel times

2. Indirect intermediate outcomes:
 - Do corridors foster economic activity? Nighttime lights and market access in Iraq
 - Are corridors linked to changes in land use? Evidence of Ethiopia using land use data

3. Evidence on the wider economic benefits:
 - Do investments in infrastructure reduce the cost of distance within a country? Price series in Pakistan
 - Do roads improve welfare? Poverty and nighttime lights in Pakistan

4. Can we improve corridors with complementary Interventions
 - Last-mile connectivity in Guinea-Bissau
 - Trade Investments in Southern Africa
 - Trauma registries in Malawi
A Flavor of the ieConnect Corridors Portfolio

Bring new and existing data sources together to answer some of the big questions

Do corridors foster economic activity? Nighttime lights and market access in Iraq
Iraq Expressway 1 and N-S Corridor Project

Sections of Expressway Rehabilitation (R7&8): 257km

Girsheen and Suheila Road: 23km
Merging multiple sources of spatial data (ESOC, LandScan, LSMS, WorldPop) with quasi-experimental methods (triple difference, RDD, panel analysis, etc.) to determine the project’s impacts.

Infrastructural deficiencies limit Iraq’s transport and trade corridors’ abilities to play their role efficiently; unrest limits data collection.

Use geographically precise information on the timing and location of road improvement to examine changes in nighttime lights and market access by pixel for the Expressway.

✓ Is there enough variation in the light across the study area and over time to detect substantive changes due to treatment?
✓ YES: Between 2014 and 2019, 33% increase in the mean value of nighttime lights around the Expressway.
Nighttime Lights in Nearby Project Areas

Extracting Nighttime Lights near Project Roads

R7/8ab road

5, 10 and 20 km buffers

Nighttime lights around roads

Do nighttime lights correlate with socioeconomic indicators?

Luminosity has a 0.3 correlation coefficient with household income

Data from the 2012 LSMS

Are there similar pre-trends in project roads vs. similar roads?

Proportion of Cells with Radiance > 1
Market Access, Speeds and Shortest Paths

Market access: Break into 20 quantiles
WorldPop: estimates the number of people per 100-meter pixel in 2015

Road data: Open Street Maps

Market Access (theta = 3.8)
We will investigate: how are changes in market access associated with nighttime lights and other indicators?
A Flavor of the ieConnect Corridors Portfolio

Bring new and existing data sources together to answer some of the big questions

Are corridors linked to land use changes? Evidence of Ethiopia’s urbanization
Estimating the Impact of the RSDP in Ethiopia

- Aim to promote growth, high value agriculture, and light manufacturing
- Issue: Transportation infrastructure inadequate
- Solution: Road Sector Development Program (RSDP) started in 1997 to build new roads and upgrade, rehabilitate, and maintain existing roads
- Did it transform Ethiopia’s landscape towards less agricultural land more urban areas?
Satellite Imagery and Land Use in Ethiopia

Land Cover
- *Description:* Classifies land cover annually from 1992 to 2015. We consider urban areas and cropland
- *Source:* European Space Agency Globcover Dataset

Vegetation
- *Description:* Use NDVI, a vegetation index, as a proxy for crop yields
- *Source:* Landsat

Nighttime lights
- *Description:* Captures luminosity for 1 km pixels from 1992 to 2013 annually. Light intensity correlates well with local GDP level (Storeygard & Donaldson (2016)).
- *Source:* Defense Meteorological Satellite Program Operational Line Scanner (DMSP-OLS)

Urbanization around Addis Ababa

Land Cover: 1996
Satellite Imagery and Land Use in Ethiopia

Methods
- Examine trends in variables before and after road improvement
- Break down results by baseline nighttime light level & by speed limit of improved road

Results
- Increased growth in urban area after road improvement
- In woredas with high baseline NTL, increased growth mainly seen in areas near roads with speed limit less than 50km/hr
A Flavor of the ieConnect Corridors Portfolio

Bring new and old data sources together to answer some of the big questions:

1. **Feeding into the M&E – targeted outcomes**
 - Measuring speed, congestion and accessibility – resources for scraping travel times

2. **Indirect intermediate outcomes:**
 - Do corridors foster economic activity? Nighttime lights and market access in Iraq
 - Are corridors linked to changes in land use? Evidence of Ethiopia using land use data

3. **Evidence on the wider economic benefits and costs**
 - Do investments in infrastructure reduce the cost of distance within a country? Price series in Pakistan
 - Do roads increase pollution? Pollution from the sky in Pakistan

4. **Can we improve corridors with complementary Interventions**
 - Last-mile connectivity in Guinea-Bissau
 - Trade Investments in Southern Africa
 - Trauma registries in Malawi
A Flavor of the ieConnect Corridors Portfolio

Bring new and old data sources together to answer some of the big questions:

Do investments in infrastructure reduce the cost of distance within a country?

Price series in Pakistan
Understanding Impacts of Pakistan’s Corridor Investments

Direct effects of corridor investments on travel times
- What is the impact on transport of goods?

Effect on local economic activity
- How do road investments impact household income?

Effects of reduction on transport costs
- How are market prices affected?
- Are regional markets more integrated?

Impact on pollution
- What is the impact on air pollution, as captured by NO2?

Price Market Locations
- Market

Roads
- Hazara Expressway
- Highways
- M4
- N-50
- N-70

Log(NTL)
- 6
- 4
- 2
- 0
Measuring intra-national trade costs

- Cities far away face different prices: distance is costly
- Without intranational trade costs, arbitrage possibilities would disappear

- How do final consumer prices change as a result of changes in transport infrastructure?
- Market prices from 76 markets across 40 cities
Measuring intra-national trade costs

Example of transport investment affecting the routes for Himalayan Rock Salt

Distance is costly
Increase in 100 km between origin and destination results in 0.2% difference in consumer prices
A Flavor of the ieConnect Corridors Portfolio

Bring new and old data sources together to answer some of the big questions:

Do roads increase pollution? Pollution from the sky in Pakistan
Measuring Air Pollution from Satellite Imagery

• Using satellite imagery, we infer the levels of NO$_2$ at pixel-level (750m x 750m on the ground)

• Values above 5×10^{15} molecules/cm2 are generally considered polluted and values above 1×10^{16} are considered highly polluted

• Important issue for Pakistan: Lahore experienced a 50% increase in NO$_2$ from 2005 to 2017 – not all due to transport!

Values of tropospheric NO$_2$, 10^{15} molec/cm2 as measured from satellite imagery
A Flavor of the ieConnect Corridors Portfolio

Bring new and old data sources together to answer some of the big questions:

1. Feeding into the M&E – targeted outcomes
 - Measuring speed, congestion and accessibility – resources for scraping travel times

2. Indirect intermediate outcomes:
 - Do corridors foster economic activity? Nighttime lights and market access in Iraq
 - Are corridors linked to changes in land use? Evidence of Ethiopia using land use data

3. Evidence on the wider economic benefits and costs
 - Do investments in infrastructure reduce the cost of distance within a country? Price series in Pakistan
 - Do roads increase pollution? Pollution from the sky in Pakistan

4. Can we improve corridors WEBs with complementary interventions?
 - Last-mile connectivity in Guinea-Bissau
 - Trade Investments in Southern Africa
 - Trauma registry in Malawi
A Flavor of the ieConnect Corridors Portfolio

Bring new and old data sources together to answer some of the big questions:

Last-mile connectivity in Guinea-Bissau

• Trade Investments in Southern Africa
 • Trauma registry in Malawi
Guinea-Bissau Road Project

What is the impact of road construction, improvement and last mile connectivity on local economic development?

After a period of instability, transport infrastructure policy in GB has expanded to include social objectives like poverty reduction, job creation, personal security.

This impact assessment aims to measure changes in transport costs and accessibility through improvement and construction of 60 km roads and 50 km of feeder roads.

The project will rely on difference-in-difference approaches to measure change in treatment and control localities outcomes.
• 40 percent of rural Africans live within **two kilometers** of an all-season road which is the lowest level of rural accessibility in the developing world (Gwilliam et al, 2008)

• Feeder roads connection to the main trunk road ensure **last mile connectivity** and help magnify the wider economic benefits of the economic corridors

• Without last mile connectivity, **women** in particular find their access to **education and healthcare**, especially maternal care, severely hampered, thereby contributing to Guinea-Bissau’s very high ratio of maternal mortality (790 deaths per 100,000 live births)
A Flavor of the ieConnect Corridors Portfolio

Bring new and old data sources together to answer some of the big questions:

Trade Investments in Southern Africa
Transport and Trade facilitation projects are often based on a bundle of measures

- Hard Infrastructure
- needed to implement the World Trade Organisation’s Trade Facilitation Agreement

Why are some trades routes more used than others?

- Hard infrastructure to reduce transport costs, but are they enough?
- Soft intervention: ease of trading across borders
Trade Infrastructure in Southern Africa

• Study a **multicomponent trade facilitation projects in Malawi** and in Southern Africa
• Merging high frequency customs records and survey data
• Key questions:
 • What are the impacts of import procedures on customs efficiency and the ease of trading across borders?
 • Are the new procedure improving bordering crossing?
 • Are they allowing for easier tariffs and taxes collection?
 • Are traders well informed about the routes?
A Flavor of the ieConnect Corridors Portfolio

Bring new and old data sources together to answer some of the big questions:

Road safety on the corridors: Trauma registry in Malawi
Trauma Registries to Support Cross-Sectoral Policies for Road Traffic Crashes in Malawi

• **Goal**: Save lives through post-crash care

• **Gaps in existing data systems**: Health MIS consist of monthly aggregate data but no information on the cases including severity and lot of missing data

• **Solution**: Trauma registries with demographics, mode of transport to hospital, geographic location of trauma, time of trauma, hospital arrival, vital signs, details on up to 3 injuries, daily outcomes

• **3 key elements**: Digital data collection, wide coverage (10 health facilities) and real-time

• **76,427 Trauma Entries as of March 30, 2020**
Building Data Collaborations Across Transport and Health Sectors

TRANSPORT SECTOR

- Identify crash priorities
- Trauma Registry
- Data System Approach
- Police Data

HEALTH SECTOR

- Evaluate impact of EMS
- Improve EMS
- Resource planning
- HMIS Data

Types of Road Traffic Crash Victims

<table>
<thead>
<tr>
<th>Type</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Driver of Motor Vehicle</td>
<td>37.2%</td>
</tr>
<tr>
<td>Pedestrian</td>
<td>14.2%</td>
</tr>
<tr>
<td>Passenger of Motor Vehicle</td>
<td>13.5%</td>
</tr>
<tr>
<td>Cyclist</td>
<td>12.3%</td>
</tr>
<tr>
<td>Motorbike</td>
<td>13.9%</td>
</tr>
<tr>
<td>Unknown</td>
<td>0.0%</td>
</tr>
</tbody>
</table>

Total Road Traffic Crashes from Mid-August 2018 to May 2019

Legend:
- Green: Hospital
- Orange: Health Center
- Blue: Clinic
- Black: Birth Place
- Red: Unknown
- Pink: Roadside
- Yellow: Not Specified
- White: Other

Trauma Outcome for Inpatient Cases Last Three Months

- Count

<table>
<thead>
<tr>
<th>Age Group</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-4</td>
<td>280</td>
</tr>
<tr>
<td>5-14</td>
<td>144</td>
</tr>
<tr>
<td>15-24</td>
<td>138</td>
</tr>
<tr>
<td>25-34</td>
<td>123</td>
</tr>
<tr>
<td>35-44</td>
<td>102</td>
</tr>
<tr>
<td>45-54</td>
<td>68</td>
</tr>
<tr>
<td>55-64</td>
<td>47</td>
</tr>
<tr>
<td>65+</td>
<td>32</td>
</tr>
</tbody>
</table>

Average Weekday Cases

- Monday: 150
- Tuesday: 150
- Wednesday: 150
- Thursday: 150
- Friday: 150
- Saturday: 50
- Sunday: 50
EXTRA SLIDES
Nighttime Light around R7&8 and along Expressway

Example: Mean Nighttime Light Data 2012

R7/8ab road
5, 10 and 20 km buffers